1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
Итак, нам дан треугольник ABC, в нём BM - биссектриса, а прямая XK пересекает BM в точке O, сторону BC - в точке K, причём XK _|_ BM. X я обозначил, можно сказать, просто так, для решения это нам не нужно. Итак, рассмотрим треугольник BKM: у него KO - медиана (т.к. O - середина BM) и высота (т.к. OK _|_ BM), значит треугольник BKM - равнобедренный с основанием BM. У равнобедренного треугольника углы при основании равны, то есть <KBM = <KMB, но при этом <KBM=<XBM (т.к. BM - биссектриса по условию), значит <KMB = <KBM = <XBM, т.е. <KMB = <XBM, но эти углы накрест лежащие при прямых AB и KM и секущей BM, что значит, что прямая AB || KM по 1-му признаку параллельности прямых, что и требовалось доказать