1. Первый кокос бросаем с 4 этажа. Если он разбивается, то вторым кокосом последовательно проверяем 1, 2, 3 этаж - итого, не более 4 бросков.
2. Если кокос на броске (1) не разбился, то производим следующий бросок с 7 этажа. Если кокос разбивается, то вторым кокосом последовательно проверяем 5, 6 этаж - итого, не более 4 бросков.
3. Если кокос на бросках (1, 2) не разбился, то производим следующий бросок с 9 этажа. Если кокос разбивается, то вторым кокосом проверяем 8 этаж - итого 4 броска.
4. Если кокос на бросках (1, 2, 3) не разбился, то производим следующий бросок с 10 этажа. Итого 4 броска.
f'(x)=1/(5x+4) * (5x+4)'= 1/(5x+4) *5= 5/(5x+4).
f'(2)=5/(5*2+4)=5/14.
2.lg(3x+4)=2lg x
lg(3x+4)=lgx² (двойка идет в степень)
Так как логарифмы с одинаковым оснаванием и они равны, то можно прировнять подлогарифмические выражегия
3х+4=х²
х²-3х-4=0
По ьеореме Виета
х1х2=-4
х1+х2=3
х1=-1 х2=4
ОДЗ х>0 и 3х+4>0, т.е
х>0 и х>-4/3, т.е просто х>0.
Тогда х1 нас не удовлетворяет.
ответ: 4
3. lg^(2) x-3lg x = -2
Вводим замену lgx= t
t²-3t+2=0
По т. Виета
t1•t2=2
t1+r2=3
t1=1
t2=2, возвращаемся к замене
1. lgx=1
(lg это десятичный логарифм, т.е. основание у него 10, еще мы знаем что логарифм у которого основание равно подлогарифмическому выражению равен 1)
lgx=lg10 (мы 1 меняем на lg10)
x=10
2. lgx=2
lgx=2lg10
lgx=lg10²
x=10²
x=100.
ответ: 10; 100.