М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
suminjenya
suminjenya
06.01.2022 02:23 •  Алгебра

Натуральні числа a, b та просте число р задовольняють рівність: а р = V. Доведіть, що число 2 (b+p) с квадратом натурального числа. ​

👇
Открыть все ответы
Ответ:
Khayalnuriev2005
Khayalnuriev2005
06.01.2022
Доказать неравенство: а⁴+b⁴ ≥ a³b+ab³
Тут штука такая: надо просто помнить, что если a > b, значит, a - b > 0
Эти 2 неравенства друг без друга "жить не могут". если надо доказать 1-е, надо смотреть 2-е и наоборот. Вот, давай посмотрим:
Нам надо доказать ≥.
Значит, будем смотреть разность и она должна быть ≥ 0
а⁴+b⁴ - a³b - ab³ = (а⁴ - а³b) + (b⁴ - ab³)= a³(a - b) -b³(a - b) =
=(a - b)(a³ - b³) = (a - b)(a - b)(a² +ab +b²) = (a - b)²(a² +ab + b²) - а это выражение всегда ≥ 0 ( первая скобка в квадрате, а во второй скобке сумма квадратов двух чисел всегда > их произведения.) , ⇒
⇒ а⁴+b⁴ ≥ a³b+ab³
4,5(41 оценок)
Ответ:
windi37
windi37
06.01.2022

Теорема о медианах треугольника

Рассмотрим произвольный треугольник АВС.

teorema_o_medianah_treugolnikama – медиана треугольника, проведенная к стороне BC

mb – медиана треугольника, проведенная к стороне AC

mc– медиана треугольника, проведенная к стороне AB

O – центр пересечения медиан треугольника

A, B, C – вершины треугольника

 

 

Теорема о медианах треугольника формулируется следующим образом: медианы треугольника пересекаются в одной точке (на рисунке точка O) и делятся этой точкой в пропорции 2:1, если считать от вершины, с которой проведена медиана.

Все формулы по теме теорема о медианах треугольника:

Основные формулы

Формулы площадей

Формулы объемов

Формулы периметра

Геометрические фигуры

Объемные тела

Площадь поверхности

Тригонометрические формулы

Теоремы по геометрии

Теорема Пифагора

Обратная теорема Пифагора

Теорема косинусов

Теорема синусов

Теорема тангенсов

Теорема о медианах треугольника

Теорема о биссектрисе

Теорема о сумме углов треугольника

Теорема о сумме углов многоугольника

Теорема Чевы

Теорема Виета

Теорема Фалеса

4,5(60 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ