1 этап составление модели.
2 этап работа с моделью
3 этап ответ
составление модели: пусть а см - одна сторона прямоугольника, b см - другая сторона. периметр будет равен 2(a+b) см. по условию периметр равен 50. значит 2(a+b)=50
При увеличении стороны в 3 раза, то есть 3a см, а другой стороны уменьшив на 7см, то есть (b-7) см, получим периметр 2(a+(b-7)) см, по условию он равен 84 см. получим второе уравнение 2(a+(b-7))=84
решив систему из двух уравнений
2 этап
2(a+b)=50
2(3a+(b-7))=84
выразим из первого уравнения b=50:2-a
b= 25-a
подставим значение b во второе уравнение
2(3a+(25-a))=84
раскроем скобки и решим
получим 3a-a=42+7-25
a=12. b=13
ответ.
Одна сторона прямоугольн ка равна 12 см, другая 13 см
1)
a) x < -5; x ∈ (-∞; -5)
б) x >= -5 ; x ∈ [-5; +∞)
в) x <= - 5 ; x ∈ (-∞; -5]
г) x > - 5; x ∈ (-5; +∞)
ответ : б)
2)
6 - положительное, целое - натуральное
3/7 - нецелое (0 < 3/7 < 1) - не натуральное
√2 - нецелое (1 < √2 < 2) - не натуральное
0 - не положительное - не натуральное
-8 - не положительное - не натуральное
-3,9 - не положительное - не натуральное
37 - положительное, целое - натуральное
п - 3,14 - положительное, целое - натуральное
-√7 - не положительное - не натуральное
ответ: 26, 37, п
3)
3√49 - 3(√2)^2
3√49 = 3*7=21
21 - 3(√2)^2
21 - 3*2 = 21 - 6 = 15
4)
5х-15<0
2x-3>=0
5x<15
2x>=3
x=3
x=3/2=1.5
x е [1.5; 3)
5) 35/3√7 * √7/√7 = 5*7*√7/3*7= 5√7/3
6)
√7×√63 - √27 ÷ √12=
=√441 - √27 ÷ √4 =
= 21 - 3÷2 =
= 39÷2 =
= 19,5