Два натуральных числа (n) и (2017-n); очевидно, что это не двузначные числа: 99+99 < 2017 ... и не трехзначные: 2*999 < 2017 2017:2 = 1008.5 (одно из них точно больше 1000) если обозначить меньшее из этих чисел (n), то большее можно записать как (10*n + c), где с∈{0;1;2;3;4;5;6;7;8;9} -это цифра например, (23) и (234 = 10*23 + 4); получим: 2017 - n = 10*n + c с = 2017 - 11n и осталось решить 10 уравнений: 0 = 2017 - 11n ---> n ≠ 2017:11 ∉ N 1 = 2017 - 11n ---> n ≠ 2016:11 ∉ N 2 = 2017 - 11n ---> n ≠ 2015:11 ∉ N 3 = 2017 - 11n ---> n ≠ 2014:11 ∉ N 4 = 2017 - 11n ---> n = 2013:11 = 183 5 = 2017 - 11n ---> n ≠ 2012:11 ∉ N 6 = 2017 - 11n ---> n ≠ 2011:11 ∉ N 7 = 2017 - 11n ---> n ≠ 2010:11 ∉ N 8 = 2017 - 11n ---> n ≠ 2009:11 ∉ N 9 = 2017 - 11n ---> n ≠ 2008:11 ∉ N т.е. таких чисел только два... 183 и 1834
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0