Найдем значения Х, которые обращают подмодульные выражения в ноль: 1)x^2-2x-15=0 ОДЗ:6x-27>0;x>4,5 x1=-3; x2=5 2)x^2-8x+12=0 x1=-2; x2=6 Отметим эти точки на числовой прямой:
-3-256
Точки разбивают числовую ось на 5 промежутков. Рассмотрим каждый: 1)x<-3 Первое подмодульное выражение отрицательно на этом промежутке, и его мы раскроем со сменой знака. Второе - положительно. Его раскроем без смены знака: -x^2+2x+15+x^2-8x+12=6x-27 x=4,5 - число не принадлежит данному промежутку 2)-3<=x<-2 Подмодульные выражения мы раскроем также как и в первом случае и получим х=4,5. Этот корень также не принадлежит промежутку. 3)-2<=X<5 Оба подмодульных выражения отрицательны: -x^2+2x+15-x^2+8x-12=6x-27 x1=-3; x2=5 - оба корня не принадлежат рассматриваемому числовому промежутку 4)5<=x<6 x^2-2x-15-x^2+8x-12=6x-27 6x-27=6x-27 Это значит, что все числа этого промежутка являются корнями уравнения. 5)x>=6 x^2-2x-15+x^2-8x+12=6x-27 x1=2; x2=6 Только х=6 принадлежит промежутку. Итак, у нас получилось два целых корня: 5 и 6. Их произведение =30.
Примем одну сторону как "х", другую как "у". Составляем систему уравнений (цифры с двоеточием заменить фигурной скобкой)
1: х - у = 14
2: х^2 + y^2 = 26^2
Получаем, что:
х = (14 + у)
(у^2 + 28y + 196) + y^2 = 676
Приводим подобные:
2y^2 + 28y - 480 = 0
Сокращаем на "2":
y^2 + 14y - 240 = 0
Далее решаем по теореме Виета для квадратных уравнений, либо через дискриминант (лично я предпочитаю второе):
a = 1, b = 14, c = -240
D = b^2 - 4ac
D = 14*14 + 4*240 = 1156
√D = 34
у1 = -b+√D/2a = -14+34/2 = 10 см.
y2 = -b-√D/2a = -14-34/2 = -24 см (таких сторон прямоугольников не существует в природе, вычеркиваем =)).
Подставляем в первое уравнение х = (14 + у) и... о чудо!:
14+10 = 24 см.
ответ: Большая сторона данного прямоугольника равна 24 сантиметрам.