ответ:x ∈ {(2*пи*k+asin(2*cos(2)*sin(2)*корень(sin(2)^4-2*cos(2)^2*sin(2)^2+cos(2)^4)/(sin(2)^2*корень(sin(2)^4+2*cos(2)^2*sin(2)^2+cos(2)^4)-cos(2)^2*корень(sin(2)^4+2*cos(2)^2*sin(2)^2+cos(2)^4/2, (4*пи*k-asin(2*cos(2)*sin(2)*корень(sin(2)^4-2*cos(2)^2*sin(2)^2+cos(2)^4)/(sin(2)^2*корень(sin(2)^4+2*cos(2)^2*sin(2)^2+cos(2)^4)-cos(2)^2*корень(sin(2)^4+2*cos(2)^2*sin(2)^2+cos(2)^4)))-пи)/2, (4*пи*k-asin(2*cos(2)*sin(2)*корень(sin(2)^4-2*cos(2)^2*sin(2)^2+cos(2)^4)/(sin(2)^2*корень(sin(2)^4+2*cos(2)^2*sin(2)^2+cos(2)^4)-cos(2)^2*корень(sin(2)^4+2*cos(2)^2*sin(2)^2+cos(2)^4)))+пи)/2}, k ∈ Z
cos(x+2)^2*sin(x-2) = 0
Решение!
Решение методом разложения на множители: Решаем уравнение: Решаем уравнение: Периодические решения:х (км/ч) - скорость 2-го лыжника
у (ч) - время 2-го лыжника
х+3 (км/ч) - скорость 1-го лыжника
у-2 (ч) - время 1-го лыжника
1) ху=180 путь 1-го лыжника
2) (х+3)(у-2)=180 - путь 2-го лыжника
3) ху=(х+3)(у-2)
ху=ху-2х+3у-6
ху-ху+2х-3у+6=0
2х-3у+6=0
4) Т.к. ху=180
у=180/х, подставив значение х, получим
2х-3*(180/х)+6=0
2х- 540/х +6 =0, умножим обе части ур-я на х
2х^2 +6х -540 =0
х^2 +3х - 270 = 0
D=1089
х=15 км/ч - скорость 2-го лыжника
15+3=18 км/ч - скорость 1-го лыжника
ответ: 18 км/ч
ответ: с=7 ;a=13 ;b=25
a=7; b=13; c=25
b=7;с=13 ; a=25
Объяснение:
Мы знаем, что a,b,c различные натуральные числа.
Предположим, что выполнены одновременно 3 неравенства:
a>b ; b>c ;с>a , (строгих неравенств нет тк числа различны)
но тогда: a>b>c>a ,то есть a>a ,что невозможно.
Вывод: должно выполнятся хотя бы одно из ниже перечисленных неравенств.
a<b ,либо b<c ,либо с<a
1) Рассмотрим случай когда: a<b
тогда 2a<2b
Из условия имеем:
2a-1=b*k ,где k-натуральное число
2a=b*k+1
b*k+1<2b
b*(k-2)<-1<0
тк b-натуральное (b>0)
k-2<0
k<2
То есть k=1.
2a-1=b
2b-1=c*m (m-натуральное число)
2с-1=a*n (n-натуральное число)
2b-1=4a-3
4a-3=c*m
2c-1=a*n
Предположим ,что m>4 ,но тогда:
4a-3=c*m<4a ,но тогда если с>a,то с*m>4a, что невозможно.
Значит если m>4, то с<a.
Но тогда по тем же рассуждениям что и с a<b (2a-1=b*k)
Cразу же получаем что:
2c-1=a
Выразим b через c :
2a-1=4c-3
2a-1=b
b=4c-3
2b-1=c*m
2*(4c-3)-1=c*m
8c-7=c*m
c*(8-m)=7>0
То есть c делитель числа 7:
То есть с=1 или с=7
Но если c=1 ,то 8-m=7 m=1,что невозможно тк m>4 .
Вывод: c=7 ; a=2c-1=13 ; b=2a-1=25.
Теперь рассмотрим частные случаи когда m<=4 m=1,2,3,4
2b-1=c*m
тк 2b-1 нечетное число, то и m должно быть нечетно, но тогда m=1 либо m=3.
Если m=1 ,то имеем:
2a-1=b
2b-1=c
Тогда из симметрии задачи получаем что:
a=7; b=13; c=25
Если же:
m=3,то
2a-1=b
2b-1=3c
Выражаем a через с:
2b-1=4a-3
4a-3=3c → 6c=8a-6
2c-1=a*n
6c-3=3*a*n
8a-6-3=3*a*n
a*(8-3n)=9
тк a>0 , 8-3n>0 ,тогда n=1 или n=2
8-3n=5 или 8-3n=2
Но 9 не делится на 5 или 2.
Таким образом, если a<b
то с=7 ;a=13 ;b=25
или a=7; b=13; c=25.
В остальных же двух случаях :
b<c ,либо с<a в силу симметрии задачи получаем
те же числа в решениях : 7,13,25
Но тут надо быть крайне аккуратным эта задача запутана во всех смыслах. (это далеко не значит что абсолютно все перестановки чисел 7,13,25 являются решениями, как я сначала подумал!).
Чтобы не запутаться, запишем в каком приоритете мы находили решения в первой случае:
a<b : 1) a→b ; 2)b→c 3);c→a
Внимание ! Тут очень важна зависимость. Второе число одного номера равно первому числу следующего номера!
Мы получили такие решения:
с=7 ;a=13 ;b=25 -в номерном порядке : 3,1,2
a=7; b=13; c=25 -в номерном порядке :1,2,3
Рассмотрим случай: b<c
Cледую необходимой зависимости имеем:
1) b→c 2) c→a 3) a→b
3,1,2- a=7,b=13,c=25 (как видим решение cовпало)
1,2,3- b=7 ; c=13 ;a=25
Рассмотрим случай: c<a
Cледуя требуемой зависимости:
1)c→a 2) a→b 3) b→c
3,1,2- b=7 ; c=13 ; a=25 (решение совпало)
1,2,3 -c=7; a=13 ;b=25 (решение совпало)
Таким образом у нас оказывается только 3 решения!
с=7 ;a=13 ;b=25
a=7; b=13; c=25
b=7;с=13 ; a=25