Завод должен 120 деталей к сроку, он стал выполнять на 20 деталей в час больше и закончил на 1 час раньше. Сколько деталей в час должно быть по по плану ?
пусть х - деталей в час должен был по плану выполнять завод, (x+20) - деталей в час должен по факту выполнял завод.
Если x1 и x2 – корни квадратного уравнения a·x2+b·x+c=0, то сумма корней равна отношению коэффициентов b и a, взятому с противоположным знаком, а произведение корней равно отношению коэффициентов c и a, то есть, дано: х2+рх+ф=0 м и н некоторые числа м+н=-р м*н=ф док-ть: м и н корни квадратного уравнения док-во: х2+рх+ф=0 х2-(м+н) *х+м*н=0 х2-мх-нх+м*н=0 х (х-н) -м (х-н) =0 (х-м) (х-н) =0 х-м=0 х-н=0 х=м х=н чтд
пусть х - деталей в час должен был по плану выполнять завод,
(x+20) - деталей в час должен по факту выполнял завод.
тогда 120/x-120/(x+20)=1
решаем 120(x+20)-120x=(x+20)x
120·20 =x²-20x x²+20x-120·20=0
x1=-10-√(100+120·20)<0
x2=-10+√(100+120·20)=-10+50=40
ответ: 40 деталей в час должен был по плану выпускать .
проверка дает положительный результат.