1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
Задание 3.
Сравните числа. а) 7,653>7,563
б) 1,(56) > 1,56
в) - 4,(45) < -4,45
г) 1,(34) <1,345
Задание 4:
Число 7,15 г) рациональное, т.к. 7,15=715/100
Число - 35. б) целое
Пусть одна диагональ равна 2х, другая - 2у, тогда 2х+2у=24 и х+у-12, откуда у=12-х.
Диагонали ромба пересекаются под прямым углом, таким образом, площадь ромба состоит из 4-х прямоугольны треугольников с катетами х и у, т.е. площадь ромба S=4*0.5xy=2xy.
Подставим сюда у=12-х и получим S=24x-2x^2.
Найдём максимум этой функции. S'= 24-4x.
Стационарная точка: 24-4х=0 х=6
При х=7 S'<0; при х=5 S'>0, следовательно при х=5 имеем максимум S.
у=12-х=12-6=6.
Тогда Smax=2*6*6=72.
Интересно, что получился квадрат с диагоналями, равными 12.