Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:
Сумма корней приведённого квадратного уравнения x2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.
То есть, если имеется приведённое квадратное уравнение x2 + bx + c = 0, а его корнями являются числа x1 и x2, то справедливы следующие два равенства:
Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.
У=-5х²+6х 1) график парабола, ветви вниз, значит наибольшее значение достигается в вершине параболы, а наименьшего значения не существует. Найдём вершину данной параболы х(в)=-6 / -10 = 0,6 у(в) = -5*0,36+6*0,6 =-1,8+3,6=1,8 Значит, максимальное значение у(0,6)=1,8 минимальное значение у(-∞)=-∞. 2) у=-2х²+5х+3, у(х)=-4 -2х²+5х+3=-4 -2х²+5х+7=0 Д=25+56=81=9² х(1)=(-5+9)/-4= -1 х(2)=(-5-9)/-4= -3,5 => y(-1)=-4 и y(-3.5)=-4
Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:
Сумма корней приведённого квадратного уравнения x2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.
То есть, если имеется приведённое квадратное уравнение x2 + bx + c = 0, а его корнями являются числа x1 и x2, то справедливы следующие два равенства:
Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.
Объяснение: