Множество значений функции y = f(x) на некотором интервале x представляет собой множество всех значений, которые данная функция принимает при переборе всех значений x∈X.
Мы знаем, что производная функции будет положительной для всех значений x, расположенных в интервале [-1; 1], то есть на протяжении всей области определения функция арксинуса будет возрастать. Значит, самое маленькое значение она примет при x, равном -1, а самое большое – при x, равном 1
Таким образом, область значений функции арксинус будет равна E(arcsin x)=[-
Периметр - это сумма длин всех сторон. Р = 25 см - периметр треугольника.
а) Пусть х см - вторая сторона, тогда 1,5х см - первая сторона и (х + 4) см - третья сторона. Уравнение:
х + 1,5х + х + 4 = 25
3,5х = 25 - 4
3,5х = 21
х = 21 : 3,5
х = 6 (см) - вторая сторона
1,5 · 6 = 9 (см) - первая сторона
6 + 4 = 10 (см) - третья сторона
ответ: 9 см, 6 см и 10 см.
б) Пусть х см - длина первой стороны, тогда (х - 5) см - длина второй стороны, (х + (х - 5) - 7) см - длина третьей стороны. Уравнение:
х + х - 5 + х + х - 5 - 7 = 25
4х = 25 + 5 + 5 + 7
4х = 42
х = 42 : 4
х = 10,5 (см) - первая сторона
10,5 - 5 = 5,5 (см) - вторая сторона
(10,5 + 5,5) - 7 = 9 (см) - третья сторона
ответ: 10,5 см; 5,5 см и 9 см.
x-y=1
xy=240
x=1+y
(1+y)y=240
y+y^2=240
y^2+y-240=0
D=961
y=15 х=16