1. а) a-b=0,04
а>b, т.к. только вычитая из большего числа меньшее, мы получаем положительное число.
б) a-b=-0,01
а<b, т.к. вычитая из меньшего числа большее мы будем всегда получать отрицательное число.
2. а) (x-3)² > x(x-6)
Воспользуемся формулой квадрата разности: (а-b)²=a²-2ab+b²
х²-2*3х+3² > x*x-6x
x²-6x+9 > x²-6x
x²-6x+9-x²+6x > 0
9>0
Неравенство верно, от х не зависит.
Вывод: неравенство (x-3)² > x(x-6) верно при любых значениях х.
б) (x+5)² > x(x+10)
х²+2*5*х+5² > x*x+10x
x²+10x+25 > x²+10x
x²+10x+25-x²-10x > 0
25 > 0
Неравенство верно, от х не зависит.
Вывод: неравенство (x+5)² > x(x+10) верно при любых значениях х.
нули функции это те значения аргумента функиии х, при которых ззначение функции y равно 0.
т.е. нужно найти х для которых ax^2+c=0 т.е. решить уравнение
ax^2+c=0
ax^2=-c
при а=0 и с=0 уравнение имеет вид
0x^2=0 и уравнение имеет бесконечно много нулей (функция имеет вид y=0)
если а=0 и с не равно 0 тогда решений нет (у функции нет нулей)
если а не равно 0, тогда перепишем уравнение в виде
x^2=-c/a которое имеет решение при условии -c/a>=0
т.е. при (a>0, c<=0 или a<0, c>=0)
итого данная функция имеет нули при a>0, c<=0
или a<0, c>=0
или а=с=0