2x−5y=12
Объяснение:
Подставим решение в каждое из представленных уравнений:
6x+11y=8
6*(-4)+11(-4)=8
-68≠8 не является решением уравнения
7x+8y=4
7*(-4)+8(-4)=4
-142≠4 не является решением уравнения
x−y=3
-4-(-4)=3
0≠3 не является решением уравнения
2x−5y=12
2*(-4)-5*(-4)=12
12=12 решение уравнения
7x−5y=3
7*(-4)-5(-4)=3
-8≠3 не является решением уравнения
45x−31y=13
45*(-4)-31*(-4)=13
-56≠13 не является решением уравнения
Значит уравнение, которое будет иметь решение (-4; -4) 2x−5y=12. Поскольку оба уравнение линейные значит решение будет единственным.
Значит система будет выглядит как:
2x−5y=12
−13x+8y=20
2x−5y=12
Объяснение:
Подставим решение в каждое из представленных уравнений:
6x+11y=8
6*(-4)+11(-4)=8
-68≠8 не является решением уравнения
7x+8y=4
7*(-4)+8(-4)=4
-142≠4 не является решением уравнения
x−y=3
-4-(-4)=3
0≠3 не является решением уравнения
2x−5y=12
2*(-4)-5*(-4)=12
12=12 решение уравнения
7x−5y=3
7*(-4)-5(-4)=3
-8≠3 не является решением уравнения
45x−31y=13
45*(-4)-31*(-4)=13
-56≠13 не является решением уравнения
Значит уравнение, которое будет иметь решение (-4; -4) 2x−5y=12. Поскольку оба уравнение линейные значит решение будет единственным.
Значит система будет выглядит как:
2x−5y=12
−13x+8y=20
У нас дано приведенное квадратное уравнение, а значит, по теореме Виета: x1+x2= - p = 1
-(t^2-3t-11)=1
-t^2+3t+11=1
-t^2+3t+10=0
t^2-3t-10=0
t=5; t=-2
Подставляем t=5
x^2+(25-15-11)x+30=0
x^2-x+30=0
D= 1-120=-119<0 => корней нет
Подставляем t=-2
x^2+(4+6-11)x-12=0
x^2-x-12=0
x=4; x=-3