М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
abduboriy2004
abduboriy2004
23.04.2023 16:35 •  Алгебра

решить дифференциальные уравнения. Вариант 7.
(xy+y^2 ) y^'=y^2
ydx-(x+y^2 )dy=0
y^' cos⁡〖x+ysin x+3y^2 cos⁡〖x=0〗 〗
(2x+y^3 )dx+3xy^2 dy=0
y^'3-xy^'+y=0

👇
Ответ:
Aurelli1
Aurelli1
23.04.2023

Объяснение:

ghhbgv, I am not a problem. I am a little more about the new year, but

4,6(53 оценок)
Открыть все ответы
Ответ:
дядяррррр
дядяррррр
23.04.2023
Сторона квадрата равна корень из его площади ( по формуле ) , значит его стороны по 4 см . Если расположить квадраты вдоль прямоугольника , чтобы они не касались друг друга , то длинна прямоугольника должна быть равна = 4+4+4 = 12 , а у нас длинна прямоугольника равна 10 . Если расположить квадраты в высоту ( по ширине прямоугольника ) , то ширина должна быть равна тоже 12 см ( чтобы квадраты не накладывались друг на друга ) , а у нас высота ( ширина ) = 4 см . Значит хотя бы 2 квадрата накладываются друг на друга :)
4,6(43 оценок)
Ответ:
DEAFKEV
DEAFKEV
23.04.2023
f(x)=3-4x+x^2\\g(x)=3-x^2

Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).

Алгоритм такой:
0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально.
1. Вычисляется площадь фигуры под g(x);
2. Теперь — под f(x);
3. Разность площадей g(x)-f(x) и будет искомой фигурой.

По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.

Поехали.

1)
\int\limits^{2} _0 {(3-x^2+1)} \, dx=(4x-x^3/3)|^{2}_0=8-8/3

2)
 \int\limits^2_0 {(3-4x+x^2+1)} \, dx =(4x-2x^2+x^3/3)|^2_0=8-8+8/3=8/3

3) 8-8/3-8/3=8-16/3=8/3 (кв. ед.)

Вроде бы так... :)
Попробую сейчас проверить решение. 
 
upd: да, всё сошлось.
 
Вычислите площадь фигуры ограниченной линиями y=3-4 x+xквадрат y=3-xквадрат
Вычислите площадь фигуры ограниченной линиями y=3-4 x+xквадрат y=3-xквадрат
4,5(40 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ