1. 2)
2. 3)
Объяснение:
1. , интеграл табличный и равняется , тогда исходный равняется , произведение констант — тоже константа, поэтому решением будет , что соответствует второму варианту ответа.
2. Область , ограниченная указанными кривыми , , и , показана на приложенном рисунке. Получается, что задают два неравенства, и . Первое неравенство задаёт подынтегральную функцию, притом напрямую (так как левая часть неравенства равна нулю), а второе — пределы интегрирования.
(Так получается, ибо — табличный интеграл, равный , а затем для определённого интегрирования применяется формула Ньютона-Лейбница, то есть , при известном , то есть , притом константа в таком случае игнорируется.)
Полученный результат соответствует третьему варианту ответа.
Объяснение:
1 в 1 и 3
4во 2 и 4
2 в 1 и 3
5 в 1 и 3
6 во 2 и 4
3 Во 2 и 4