V1=6 км/ч
Объяснение:
S=1200 м=1,2 км
V₂=V₁ +2
Δt=t₁-t₂=10-7=3 мин=3/60=0,05 ч
V₁ ?
Время пути с V₁ t₁=S/V₁=1,2/V₁
Время пути с V₂ t₂=S/V₂=S/(V₁ +2)=1,2/(V₁+2)
Из первого уравнения вычитаем второе, получим
Δt=0,05=1,2/V₁-1,2/(V₁+2)=1,2(V₁+2)-V₁)/V₁(V₁+2)=2,4/(V₁²+2V₁) ⇒
0,05(V₁²+2V₁)-2,4=0
0,05V₁²+0,1V₁-2,4=0
D = b2 - 4ac = (0.1)2 - 4·0.05·(-2.4) = 0.01 + 0.48 = 0.49
V1 = -0.1 - √0.49/2/(0.05)
= ( -0.1 - 0.7)/0.1 = -0.8/0.1 = -8 этот корень не подходит
V1 = -0.1 + √0.49/2/(0.05) =( -0.1 + 0.7 )/0.1 = 0.6 /0.1 = 6
решив получаем V₁=6 км/ч
Объяснение:
у=х²+4х-2
Это парабола ,ветви вверх. Координаты вершины
а)х₀=-в/2а, х₀=(-4)/2=-2 , у₀=(-2)²+4*(-2)-2=-6 , (-2; -6).
б) во всех четвертях.
с) х=-2
d)Точки пересечения с осью ох, т.е у=0
х²+4х-2=0
Д=в²-4ас, Д=4²-4*4*(-2)=16+32=48=16*3
х₁=(-в+√Д):2а , х₁=(-4+4√3):2 , х₁=2(-2+2√3):2 , х₁=-2+2√3, (-2+2√3;0)
х₂=(-в-√Д):2а , х₂=(-4-4√3):2 , х₂=2(-2-2√3):2 , х₂=-2-2√3 , (-2-2√3;0)
Точки пересечения с осью оу, т.е. х=0, у=-2 (0;-2)
Доп.точки у=х²+4х-2 :
х: -5 -4 -3 1
у: 3 -2 -5 3
2)у=-х²-2х+6 Это парабола ,ветви вниз.
а)f(2)=-(2)²-2*2+6=-4-4+6=-2,
f(-2)=-(-2)²-2*(-2)+6=-4+4+6=6,
б) точка (-3;к) принадлежит графику функции, значит ее координаты удовлетворяют уравнению у=-х²-2х+6.
к=-(-3)²-2*(-3)+6 , к=-9+6+6 , к=3
Объяснение:
y=2/(x-3)
Пошагово
умножаем обе части на (x-3)
y*(x-3) =2
делим обе части на y
x-3 = 2/y
тройку переносим в правую часть - меняется у нее знак
x = 3+2/y
все