Обозначим искомое число как , по условию . Перенесём единицу в левую часть и разложим разность кубов на множители:
Понятно, что , тогда обе скобки-сомножителя - натуральные числа, большие 1. С другой стороны, произведение представляется в виде двух натуральных сомножителей, больших единицы, единственным (с точностью до перестановок . Поэтому , равны либо и , либо и .
Случай 1. Из первого уравнения следует, что , тогда после подстановки во второе уравнение находим . - действительно простое число, так что нас устраивает.
Случай 2. Тут всё немного сложнее: уравнение на квадратное, а не линейное, как в первом случае. Упростив, получаем уравнение , у которого только один натуральный корень . Подставляем в первое равенство: - простое число, так что и тут нас всё устраивает.
Если всё это нарисовать, то будет видно, что площадь этой фигуры - по сути интеграл фигуры под графиком первой функции до точек пересечения со второй и третьей. Сначала найдём на всякий случай эти точки: 1. 8-x^3=0 8 = x^3 x = 2 Первая точка - {2; 0} 2. у(-1) = 8 - (-1)^3 = 8 + 1 = 9 Вторая точка (-1; 9). Теперь берём определённый интеграл первой функции на интервале [-1; 2]. Неопределённый интеграл будет равен: 8x - 1/4 x^4 + C Подставляя границы, получаем: S = (8*2 - 1/4*(2^4)) - (8*(-1) - 1/4*((-1)^4)) = (16 - 4) - (-8 + 1/4) = 19 3/4 Вроде бы так
Если возвести 2 в десятую степень то есть 2¹⁰ это будет = 1024
Объяснение:2¹⁰=2*2*2*2*2*2*2*2*2*2=1024 , в степени значит умножить число на друг друга столько сколько раз написано в степени .