4.Односторонний предел — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левым и правым пределами.
Число A называется пределом функции y=f(x) при x стремящемся к бесконечности, если для любого, даже сколь угодно малого положительного ε, найдется такое число M (зависящее от ε), что для всех x таких, что |x|>M,выполнено неравенство: |f(x)−A|<ε
Теорема 1. (о предельном переходе в равенстве). Если две функции принимают одинаковые значения в окрестности некоторой точки, то их пределы в этой точке совпадают.
 Þ .
Теорема 2. (о предельном переходе в неравенстве). Если значения функции f(x) в окрестности некоторой точки не превосходят соответствующих значений функции g(x), то предел функции f(x) в этой точке не превосходит предела функции g(x).
 Þ .
Теорема 3. Предел постоянной равен самой постоянной.
.
Доказательство. f(x) = с, докажем, что .
Возьмем произвольное e > 0. В качестве d можно взять любое положительное число. Тогда при
y=12⋅cos(x−π3)
Используем вид записи acos(bx−c)+d
для поиска переменных, используемых для вычисления амплитуды, периода, сдвига по фазе и вертикального сдвига.
a=12
b=1
c=π3
d=0
Найдем амплитуду |a|
.
Амплитуда: 12
Определим период при формулы 2π|b|
.
Нажмите, чтобы увидеть больше шагов...
Период: 2π
Найдем сдвиг периода при формулы cb
.
Нажмите, чтобы увидеть больше шагов...
Фазовый сдвиг: π3
Найдем вертикальное смещение d
.
Вертикальный сдвиг: 0
Перечислим свойства тригонометрической функции.
Амплитуда: 12
Период: 2π
Фазовый сдвиг: π3
(на π3
вправо)
Вертикальный сдвиг: 0
Выберем несколько точек для нанесения на график.
Нажмите, чтобы увидеть больше шагов...
xf(x)π3125π604π3−1211π607π312
Тригонометрическую функцию можно изобразить на графике, опираясь на амплитуду, период, фазовый сдвиг, вертикальный сдвиг и точки.
Амплитуда: 12
Период: 2π
Фазовый сдвиг: π3
(на π3
вправо)
Вертикальный сдвиг: 0
xf(x)π3125π604π3−1211π607π312
Объяснение: