1) -2 5 -7 1 0 0 2) С непосредственной подстановкой я думаю все ясно. А выполнить проверку с схемы Горнера можно найдя остаток от деления исходного многочлена на (x-x0) (ведь по теореме Безу и будет значением многочлена в точке x0). Схему Горнера тут неудобно оформлять, поэтому давай сам как нибудь. 3) В соответствии с теоремой о рациональных корнях многочлена с целыми коффициентами, целые корни должны быть делителями свободного члена 3. Делители тройки: 1, -1, 3, -3. Убеждаемся что только числа 1 и 3 являются корнями. ответ: x=1, x=3 4) Сначала поищем целые корни. Проверим числа 1, -1, 3, -3, 9, -9. 1 - корень, поэтому делим исходный многочлен на (x-1) и получаем 5x^2+14x+9. Теперь решаем квадратное уравнение находим еще два корня x=-9/5 и x=-1 Таким образом 5x^3+9x^2-5x-9=(x-1)(x+1)(5x+9)
Объяснение:
1б)
4ˣ⁺¹+7*2ˣ-2=0
4ˣ *4¹+7*2ˣ-2=0, 2ˣ>0
4*2²ˣ+7*2ˣ-2=0, пусть 2ˣ=а, тогда 4а²+7а-2=0
Д=в²-4ас, Д=7²-4*4*(-2)=81
х₁=(-в+√Д):2а , х₁=(-7+9):8=0,25 ,
х₂=(-в-√Д):2а , х₂=(-7-9):8=-2, не подходит, т.к. 2ˣ>0.
2ˣ=0,25 или 2ˣ=0,5² или х=2
ответ. х=2.
2а) 0,5²ˣ⁻⁴ <0,25
0,5²ˣ⁻⁴ <0,5², т.к. 0< 0,5<1, то знак неравенства меняется,
2х-4>2
2х >6
х >3.
ответ. х >3.