Объяснение:
Чтобы узнать какой цифрой оканчивается число:
Делим показатель степени на число вариантов, тоесть на количество цифр, которыми может оканчиваться число в разных целых положительных степенях, далее смотрим по остатку, который останется (или не останется. если нацело) при делении.
Рассмотрим отдельно каждое слагаемое данной суммы.
54¹=54, оканчивается на 4 (первый вариант, если при делении, указанном выше, остаток получится 1)
54²= 2916, оканчивается на 6 (второй вариант, если при делении остаток получится 2 (нацело))
Вариантов 2.
35÷2= 17 (остаток 1), тогда нам подходит первый вариант, тоесть 54³⁵ будет оканчиваться на 4.
Рассмотрим 28²¹
28¹=28, оканчивается на 8 (первый вариант, если получится остаток 1)
28²=784, оканчивается на 4 (второй вариант, если выйдет остаток 2)
28³=21952, оканчивается на 2 (третий вариант, если получится остаток 3)
28⁴=614656, оканчивается на 6 (четвертый вариант, если получится остаток 4 (нацело))
Вариантов 4.
21÷4=5 (остаток 1), значит первый вариант, тоесть 28²¹ будет оканчиваться на 8.
Сложим последние цифры чисел в степенях.
4+8=12, оканчивается на 2.
Значит 54³⁵ + 28²¹ оканчивается на 2
ответ: 2
1) х = 2,8 ± 0,05; у = 3,5 ± 0,05⇒х +у = 6,3 ± 0,1 ≈ 6,3;х -у = -0,7 ± 0,1≈ -0,7
2) х = 7,9 ± 0,05; у = 3,4 ± 0,05⇒х +у = 11,3 ± 0,1 ≈ 11,3;х -у = 4,5 ± 0,1≈4,5
3) х = 56,31 ± 0,005; у = 17,29 ± 0,005 ⇒х +у = 73,6 ± 0,01 ≈ 73,6;х -у = 39,02 ± 0,01 ≈ 39,02
4) х = 39,23 ± 0,005;у = 26,47 ± 0,005⇒х +у = 65,7 ± 0,01 ≈ 65,70;х -у = 12,76 ± 0,01 ≈ 12,76
5) х = 7,25 ± 0,005; у = 2,9 ± 0,05⇒х +у = 10,15 ± 0,055 ≈ 10,1;х -у = 4,35 ± 0,055 ≈ 4,3
6) х = 5,645 ± 0,005; у = 3,8 ± 0,05⇒х +у = 9,44 ± 0,055 ≈ 9,4;х -у = 1,84 ± 0,055 ≈ 1,8
Объяснение:
a = 1; b = 1;
a = 3; b = -1
Объяснение:
P(x) = x³ + ax² + bx + ab при делении на x - 2 дает остаток 15 - означает, что по теореме Безу:
P(2) = 8 + 4a + 2b + ab = 15
При делении на x + 1 = x - (-1) дает остаток 0 - означает:
P(-1) = -1 + a - b + ab = 0
Получаем систему:
"Поработаем" со 2-м уравнением:
a - b + ab - 1 = 0
a - 1 + ab - b = 0
(a - 1) + b·(a - 1) = 0
(a - 1)(b + 1) = 0
a = 1 или b = -1
1) a = 1 подставляем в 1-е уравнение получаем:
4 + 2b + b = 7
3b = 3
b = 1
2) b = -1 подставляем в 1-е уравнение, получаем:
4a - 2 - a = 7
3a = 9
a = 3