М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ученик17101
ученик17101
05.06.2023 16:32 •  Алгебра

Тест по Алгебре. Я непонимаю как это Решать, поэтому объясните :)

Задание:
(an) - арифметическая прогрессия, а5 + а7 = 10. Найдите а6.

ответы:
а) -5; б) 2; в)4; г) 5; д) 8.​

Заранее

👇
Ответ:
Школянка
Школянка
05.06.2023

В арифметической прогрессии применима формула где соседние числа в сумме и деленные на два дают тебе среднее между этими числами число: ax2= (ax1 + ax3)/2

У тебя дано a5 + a7 = 10 тогда можно подставить в формулу и получим

ax2=a6=(a5+a7)/2=(10)/2=5

4,5(51 оценок)
Открыть все ответы
Ответ:
mlizim
mlizim
05.06.2023
Дана функция y= x^3 - 2x^2 - 6x - 4 и прямая у = -2х - 12.

Находим производную функции.
y' = 3x^2 - 4x - 6.
Производная равна угловому коэффициенту касательной к графику функции.
По заданию к = -2.
Приравниваем: 3x^2 - 4x - 6 = -2.
Получаем квадратное уравнение 3x^2 - 4x - 4 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-4)^2-4*3*(-4)=16-4*3*(-4)=16-12*(-4)=16-(-12*4)=16-(-48)=16+48=64;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√64-(-4))/(2*3)=(8-(-4))/(2*3)=(8+4)/(2*3)=12/(2*3)=12/6 = 2;x_2=(-√64-(-4))/(2*3)=(-8-(-4))/(2*3)=(-8+4)/(2*3)=-4/(2*3)=-4/6 = -(2/3)≈   -0.666667.
Получили 2 точки: х = 2 и х = -(2/3).
Используя уравнение касательной у(кас) = y'(xo)*(x-xo)+y(xo), находим уравнения для полученных двух точек.
у(кас(2)) = -2*(x-2)-16 = -2х - 12 (это заданная параллельная прямая).
у(кас(-2/3)) =-2*(x+(2/3)) - (32/27) = (-2/3)х - (68/27) это и есть уравнение искомой касательной, а абсцисса точки касания х = -2/3.
Прямая y= - 2x - 12 параллельна касательной к графику функции y= x^3 - 2x^2 - 6x - 4. найдите абсцис
4,8(20 оценок)
Ответ:
karisafedotova2
karisafedotova2
05.06.2023
Дана функция y= x^3 - 2x^2 - 6x - 4 и прямая у = -2х - 12.

Находим производную функции.
y' = 3x^2 - 4x - 6.
Производная равна угловому коэффициенту касательной к графику функции.
По заданию к = -2.
Приравниваем: 3x^2 - 4x - 6 = -2.
Получаем квадратное уравнение 3x^2 - 4x - 4 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-4)^2-4*3*(-4)=16-4*3*(-4)=16-12*(-4)=16-(-12*4)=16-(-48)=16+48=64;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√64-(-4))/(2*3)=(8-(-4))/(2*3)=(8+4)/(2*3)=12/(2*3)=12/6 = 2;x_2=(-√64-(-4))/(2*3)=(-8-(-4))/(2*3)=(-8+4)/(2*3)=-4/(2*3)=-4/6 = -(2/3)≈   -0.666667.
Получили 2 точки: х = 2 и х = -(2/3).
Используя уравнение касательной у(кас) = y'(xo)*(x-xo)+y(xo), находим уравнения для полученных двух точек.
у(кас(2)) = -2*(x-2)-16 = -2х - 12 (это заданная параллельная прямая).
у(кас(-2/3)) =-2*(x+(2/3)) - (32/27) = (-2/3)х - (68/27) это и есть уравнение искомой касательной, а абсцисса точки касания х = -2/3.
Прямая y= - 2x - 12 параллельна касательной к графику функции y= x^3 - 2x^2 - 6x - 4. найдите абсцис
4,8(1 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ