Все 4 функции вида y = kx + b. если b > 0, то прямая соприкасается с осью ординат выше оси абсцисс, а если b < 0, то прямая соприкасается с осью ординат ниже оси абсцисс.
Значит, графики A и B соответствуют уравнениям 2 и 3, а графики C и D соответствуют уравнениям 1 и 4. Определим теперь конкретно какой график к какому уравнению подходит.
Рассмотрим уравнение, в котором k = 2
y = 2x + 5, причём x = = 2,5. Значит, прямая проходит через точку абсцисс 2,5.
Рассмотрим уравнение, в котором k = 1
y = x - 5, из свойств числового коэффициента b следует, что график проходит через точку ординат -5, а из формулы y = a(x - m)² следует, что точка соприкосновения оси абсцисс и прямой смещена вправо на 5.
Проведя аналогичные рассуждения с остальными двумя уравнениями и их графиками, придём к выводу, что
А) если f(x) четная , то при х>0 мы зеркально отразим нашу функцию
относительно ординат
так как для чётных функций f(x)=f(-x)
б) если f(x) нечётная, то при х>0 мы сначала зеркально отразим нашу функцию относительно оси ординат , а затем полученный график снова зеркально отразим, но уже относительно оси абсцисс так как для нечётных функций f(x)= -f(-x)
в) если функция общего вида, то как она будет вести при х>0 нельзя сказать определенно, надо проводить дополнительные исследования функции при х>0
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
Все 4 функции вида y = kx + b. если b > 0, то прямая соприкасается с осью ординат выше оси абсцисс, а если b < 0, то прямая соприкасается с осью ординат ниже оси абсцисс.
Значит, графики A и B соответствуют уравнениям 2 и 3, а графики C и D соответствуют уравнениям 1 и 4. Определим теперь конкретно какой график к какому уравнению подходит.
Рассмотрим уравнение, в котором k = 2
y = 2x + 5, причём x = = 2,5. Значит, прямая проходит через точку абсцисс 2,5.
Рассмотрим уравнение, в котором k = 1
y = x - 5, из свойств числового коэффициента b следует, что график проходит через точку ординат -5, а из формулы y = a(x - m)² следует, что точка соприкосновения оси абсцисс и прямой смещена вправо на 5.
Проведя аналогичные рассуждения с остальными двумя уравнениями и их графиками, придём к выводу, что
1) - C
2) - A
3) - B
4) - D