пусть данная дробь a/(a+2), тогда обратная дробь (a+2)/a, и новая дробь
(а+2-3)/а=(а-1)/а
получаем уравнение:
(а-1)/а - а/(а+2) = 1/15
переносим 1/15 влево и приводим к общему знаменателю
Для удобства я знаменатель писать не буду, он будет 15а(а+2). Пишу только числитель:
15(а+2)(а-1)-15а^2-a(a+2)
15a^2-15a+30a-30-15a^2-a^2-2a=0 (потому что дробь равно 0 тогда, когда числитель равен 0, а знаменатель не равен 0, значит имеем ввиду, что а не может быть равно 0,1 и -2) и ищем, когда числитель равен 0:
-a^2+13a-30=0
D=169-120
D=49
а=(-13+-7)/-2
а=10 ; 3
10 нам не подходит, поскольку по условию исходная дробь - несократимая, значит она не может быть 10/12, значит ответ: 3/5
Во-первых определимся с понятием : что такое область определения функции? Область определения функции- это значения аргумента ("х"), при которых значения функции имеют смысл( существуют) Короче говоря, нас спрашивают: какие "х" можно брать, чтобы значение функции можно было вычислить. А мы ведь умные(правда?) и знаем, что: 1) делить на 0 нельзя;2) корень квадратный из отрицательного числа не существуют , ну и т.д. а) у = √(х +3)(9 -х) У нас как раз квадратный корень. А это значит, что (х+3)(9-х) ≥ 0. Решаем это неравенство методом интервалов.Ищем нули множителей. х+3 = 0, ⇒ х = -3 9 -х = 0,⇒ х = 9 -∞ -3 9 +∞ - + + это знаки (х +3) + + - это знаки (9 -х) Это решение неравенства ответ: х∈ [ -3; 9] б) у = (5х³ -2х)/√(х² -11х +28) Рассуждаем аналогично. числитель существует ( можно посчитать значение) при любом "х" в знаменателе стоит квадратный корень. Он существует только при неотрицательных "х", но он стоит в знаменателе (делить на 0 нельзя) Значит, нам предстоит решить неравенство: х² - 11х +28 > 0 По т. Виета ищем корни х₁=4, х₂ = 7 ответ: х∈(-∞; 4)∪(7; +∞)
пусть данная дробь a/(a+2), тогда обратная дробь (a+2)/a, и новая дробь
(а+2-3)/а=(а-1)/а
получаем уравнение:
(а-1)/а - а/(а+2) = 1/15
переносим 1/15 влево и приводим к общему знаменателю
Для удобства я знаменатель писать не буду, он будет 15а(а+2). Пишу только числитель:
15(а+2)(а-1)-15а^2-a(a+2)
15a^2-15a+30a-30-15a^2-a^2-2a=0 (потому что дробь равно 0 тогда, когда числитель равен 0, а знаменатель не равен 0, значит имеем ввиду, что а не может быть равно 0,1 и -2) и ищем, когда числитель равен 0:
-a^2+13a-30=0
D=169-120
D=49
а=(-13+-7)/-2
а=10 ; 3
10 нам не подходит, поскольку по условию исходная дробь - несократимая, значит она не может быть 10/12, значит ответ: 3/5