Всё решается просто. так как cos2x=2*(cosx)^2-1 (эту формулу можно найти в учебнике или доказать) , то подставляя в уравнение получим: cos2x+4cosx-5=0 2*(cosx)^2-1+4cosx-5=0 (cosx)^2+2(cosx)-3=0 это простое квадратное уравнение относительно cosx. то есть получается два решения: cosx=1 и cosx=-3 но подходит только одно решение cosx=1, так как |cosx|< =1 осталось решить простое тригонометрическое уравнение cosx=1, по формуле тригонометрии cosx=a, x=(+/-)arccosa+2*pi*n pi-это знаменитое число 3,14159 n-любое целое число вот и всё решение.
6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
Дана система уравнений:
{2x² - 3xy + y² = 0,
{y² - x² = 12.
Из второго уравнения получаем y² = x² + 12 и подставим в первое.
2x² - 3xy + x² + 12 = 0,
3x² - 3xy + 12 = 0, сократим на 3:
x² - xy + 4 = 0
x(x - y) = -4 отсюда x - y = -4/x или y - x = 4/x.
Второе уравнение разложим как разность квадратов.
y² - x² = (y - x)(y + x) = 12.
Разделим почленно 2 уравнения.
(y - x)(y + x) = 12.
y - x = 4/x, получим y + x = 12/(4/x) = 3x или y = 3x - x = 2x.
Подставим во второе уравнение.
(2x)² - x² = 12,
4x² - x² = 12,
3x² = 12. x = +-√(12/3) = +-√4 = +-2.
y = 2x = 2*(+-2) = +-4.
ответ: x1 = -2, x2 = 2.
y1 = -4, y2 = 4.