расстояние АВ= S
скорость первого мотоциклиста -v
время 1мотоц t= S/v
Второй
проехал первую половину пути со скоростью v-20
за время t1=(S/2)/(v-20)
вторую половину пути со скоростью 126 км/ч
за время t2=(S/2)/126
t=t1+t2
S/v=(S/2)/(v-20) +(S/2)/126
1/v=1/(2*(v-20)) +1/252
1/v-1/252=1/(2*(v-20))
(252-v)/252v= 1/(2*(v-20))
(252-v)(2*(v-20))=252v
(252-v)(v-20)=126v
v^2-146v+5040
после решения квадратного уравнения
v = 56 или v=90
по условию скорость больше 60 км/ч.
ответ скорость первого мотоциклиста 90 км/ч.
Объяснение:
Решение квадратного неравенства
Неравенство вида
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
3) -(х-2)(-х-3)= --(х-2)(х+3)=+(х-2)(х+3)=(х-2)(х+3)