М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AlexKostrov
AlexKostrov
06.10.2020 17:04 •  Алгебра

От остановки электрички в перпендикулярных направлениях одновременно двинулись велосипедист игорь со скоростью 12км/ч и пешеход дима со скоростью 5км/ч. через какое время расстояние между игорем и димой будет равно 26км? нужно составить квадратное уравнение. нужно.

👇
Ответ:
nastysh20011
nastysh20011
06.10.2020
12x-расстояние велосипедиста
5x-расстояние пешехода
По теореме Пифагора
144х^2+25х^2=676
169х^2=676
х^2=4
х1=2 х2=-2(не удовлетворяет условия задачи)
ответ:Через 2 часа.
4,6(29 оценок)
Открыть все ответы
Ответ:
polinaaksd
polinaaksd
06.10.2020
Если я Вас правильно понял, то исходное неравенство выглядит так:
\frac{3^{x}-8-(2*3^{x+1}-19)}{9^{x}-5*3^{x}+6} \leq \frac{1}{3^{x}-3}
Тогда решение будет следующим:
\frac{3^{x}-8-(2*3^{x}*3-19)}{9^{x}-5*3^{x}+6} \leq \frac{1}{3^{x}-3}
ОДЗ:
Знаменатель дроби не может быть равен 0. Найдём корни при которых знаменатель будет равняться 0, чтобы потом исключить их из решения
9ˣ-5*3ˣ+6=0                                               3ˣ-3=0
3²ˣ-5*3ˣ+6=0                                              3ˣ=3
Вводим замену переменной                   x=1
3ˣ=t
t²-5t+6=0
D=25-24=1
t=(5-1)/2=2         t=(5+1)/2=3
3ˣ=2                    3ˣ=3
x=log₃2               x=1

x≠log₃2 и x≠1

Далее раскрываем скобки в числителе и переносим дробь из правой части неравенства, а также вводим замену переменой
3ˣ=t
\frac{(t-8-6t+19)(t-3)}{t^2-5t+6} \leq 0
Корни знаменателя мы нашли ранее, поэтому работаем с числителем:
(-5t+11)(t-3)=0
-5t²+15t+11t-33=0
-5t²+26t-33=0
D=26²-4*(-5)*(-33)=676-660=16
t=(-26-4)/-10=3             t=(-26+4)/-10=11/5=2,2
3ˣ=3                              3ˣ=2,2
x=1                               x=log₃2,2

\frac{(t-2,2)(t-3)}{(t-2)(t-3)} \leq 0
\frac{(t-2,2)}{(t-2)} \leq0
4,4(60 оценок)
Ответ:
nigar26
nigar26
06.10.2020
Умножив обе части на sin(x), получим уравнение 3+2*sin(x)=2*sin²(x)-sin(x), или 2*sin²(x)-3*sin(x)-3=0. Пусть sin(x)=t, тогда получаем квадратное уравнение 2*t²-3*t-3=0. Дискриминант D=9-4*2*(-3)=33,
t1=sin(x1)=(3+√33)/4, t2=sin(x2)=(3-√33)/4. Но так как √33>√25=5, то t1>(3+5)/4=2. А так как /sin(x)/≤1, то уравнение sin(x1)=(3+√33)/4 не имеет решений. Так как √33<√36=6, то 0>(3-√33)/4>-1, то есть уравнение sin(x)=(3-√33)/4 имеет решение. Но так как (3-√33)/4<0, а на промежутке [0;π] sin(x)≥0, то это решение не принадлежит промежутку [0;π]. Значит, на этом промежутке уравнение решений не имеет.
ответ: решений нет.
4,5(80 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ