Для отыскания наибольшего(наименьшего) значения функции существует один и тот же приём:
1) ищем производную.
2) приравниваем её к нулю и ищем корни.
3) смотрим , какие корни входят в указанный промежуток.
4)ищем значения данной функции на концах указанного промежутка и в точках, входящих в указанный промежуток.
5) пишем ответ.
Начали.
y = x³ -3x² +7x -5 [1;4]
y' = 3x² -6x +7
3x² -6x +7 = 0
D<0 корней нет
х = 1
у = 3*1² -6*1 +7 *1 -5 = -1
х = 4
у = 3*4³ -3*4²+7*4 -5 = 192 - 48 +28 -5 = 163
ответ: max y = 163
min y = -1
кор. 4 ст (x+8) – кор. 4 (x-8) = 2
u^4=x+8 (1)
v^4=x-8 (2)
Тогда
u-v=2
C другой стороны вычтем из (1) (2), получим
u^4 –v^4 = 16
Получаем систему
u-v=2
u^4 –v^4 = 16
Из 1-го уравнения определим u
u = v+2
Подставим во второе уравнение
(v+2)^4-v^4=16
(-v^4-16) + (v^4+8v^3+24v^2+32v+16)=0
8v^3+24v^2+32v=0
v(8v^2+24v+32)=0
Имеем,
v=0
и
8v^2+24v+32=0
v^2+3v+4=0
D=3^2-4-4*1*4=-7 < 0 – нет решений
То есть имеем одно решение v=0, тогда u = v+2=2
u^4=x+8 или x+8=2^4=16, откуда x=8
С
Объяснение: что первый y -4x что второй y -4x