Надо применить вспомагательного аргумента.
Разделить обе части ур-ия на кв.корень из суммы квадратов коэффициентов при синусе и косинусе:√(1+3)=√4=2
1/2*cosx-√3|2*sinx=1|2
так как 1|2=sinπ/6, a √3|2=cosπ/6, то в левой части получится формула синуса разности
sinπ/6*cosx-cosπ/6*sinx=1|2
sin(π/6-x)=1/2
Тогда π/6-x=(-1)^n *arcsin1|2+πn,n∈Z
Отсюда x=π/6-(-1)^n *π/6+πn,n∈Z,
Учитывая,что [-(-1)^n]=(-1)^(n+1),имеем x=π/6* (1+(-1)^(n+1)) +πn,n∈Z
Можно было, конечно, представить 1/2=cosπ/3 и √3/2=sinπ/3, тогда получили бы формулу косинус суммы. Но там в ответе надо ставить плюс,минус, а здесь это не набирается.Вообще говоря два варианта ответа. Но они на вид разные, а углы одни и те же. В тригонометрии ответы всегда можно с формул свести к одному виду.
Так, начнем. Нам известен 11 член прогресии: a(11)=31. А также, известна разность, равная d=4;
Для начала найдем первый член прогрессии, используя формулу:
a(n)=a(1)+d*(n-1); Где a(n) - n-ный член прогрессии (В нашем случае - это будет 11), d - вышеупомянутая разность, n - число искомого члена прогрессии (В нашем случае - 11).
Выразим a(1):
a(1)=a(n)-d*(n-1); считаем:
a(1)=31-4*(11-1)=31-4*10=31-40=-9. (Все правильно! Минус - это нормальное явление).
Теперь, по этой же формуле найдем 14 член прогрессии a(14):
a(14)=-9+4*(14-1)=-9+4*13=-9+52=43.
Теперь, зная 14 член прогрессии, зная первый член прогрессии, можно найти сумму первых 14 членов, по формуле:
S(n)=((a1+a(n))*n)/2;
S(14)=((-9+43)*14)/2=238.
ответ: S(14)=238.
Конечно, можно было и не искать 14 член прогрессии, и воспользоваться более сложной формулой:
S(n)=((2a(1)+d*(n-1)*n)/2=((2*(-9)+4*(14-1)*14)/2=((-18+52)*14)/2=476/2=238.
Вышли к такому же ответу.