Если следовать условию задачи, то у нас получается прямоугольный треугольник, в котором АС и СВ катеты, а АВ гиппотенуза.
Синус угла А=Против катет (СВ)\Гиппотенузу(АВ)
Чтобы найти угол нужно найти катет СВ. Для этого воспользуемся теоремой пифагора. АВ в квадрате-АС в квадрате=СВ в квадрате.=> 900-576=324=> СВ в квадрате=324, значит, СВ=18
Теперь находим синус. Sin A= 18/30=0,6. Чтобы узнать градусную меру, нужно, воспользоваться таблицей Брадиса. По таблице Брадиса Sin 0,6=37 градусов.(примерно)
1)a1 = 26
a2 = 23
a3 = 20
Для начала найдём разность арифметической прогрессии(d) : a2 - a1
23 - 26 = -3
Теперь мы можем найти a12 по формуле n-ого члена: an = a1 + (n-1)d
a12= 26 + 11 * (-3)
a12 = 26 + (33)
a12 = -7
Ну и теперь найдём сумму 12-ти членов прогрессии по формуле : Sn = (a1+an /2) * n
S12 = (26 + (-7) / 2)) * 12 = 114 2)Решение.1. a1=11; d=4; an=99; n=(an-a1)/d+1; n=(99-11)/4+1=23; Sn=0,5*(22+4*22)*23=1265.
2.d=12/3=4; 2*a1+8*d=4; a1=-14; a2=-10; a3=-6.