Дано:
S=132 км
S(плота)=60 км
v(теч.)=v(плота)=5 км/час
Найти:
v(собств. лодки)=? км/час
РЕШЕНИЕ
1) Скорость плота равна скорости течения реки v(плота)=v(теч.)=5 км/час. К тому времени, когда лодка вернулась на пристань А, плот был в пути: t(время)=S(расстояние)÷v(скорость)=60÷5=12 (часов).
2) Лодка отправилась на 1 час позже, значит она была в пути 12-1=11 часов. Лодка проплыла между пристанями А и В 132 км, и вернулась обратно от пристани В к А, проплыв ещё 132 км.
Пуст х - собственная скорость лодки. По течению моторная лодка плыла со скоростью:
v(по теч.)=v(собств.) + v(теч.)=х+5 км/час
Против течения моторная лодка плыла со скоростью:
v(пр. теч.)=v(собств.) - v(теч.)=х-5 км/час
Время в пути по течению равно: t(по теч.) =S÷v(по теч.)=132/(х+5) часа
Время в пути против течения равно: t(пр. теч.) =S÷v(пр. теч.)=132/(х-5) часа.
Всего на путь туда и обратно ушло 11 часов.
Составим и решим уравнение:
132/(х+5)+132/(х-5)=11 (умножим на (х-5)(х+5), чтобы избавиться от дробей)
132×(х-5)(х+5)/(х+5) + 132×(х+5)(х-5)/(х-5)=11(х+5)(х-5)
132(х-5) + 132(х+5)=11(х²-25)
132х-660+132х+660=11х²-275
264х=11х²-275
11х²-264х-275=0
D=b²-4ac=(-264)²+4×11×(-275)=69696+12100=81796 (√D=286)
х₁=(-b+√D)/2a=(-(-264)+286)/2×11=550/22=25 (км/час)
х₂=(-b-√D)/2a=(-(-264) -286)/2×11=-22/22=-1 (х₂<0 - не подходит)
ОТВЕТ: скорость лодки в неподвижной воде (собственная скорость) равна 25 км/час.
У=0, подставим в уравнение
0=1/9х-4
-1/9х= -4
Х= -4:(-1/4)= -4*(-4)=16
А(16;0) координаты точки пересечения.
У= -2х+6
(4;2) если точка принадлежит графику, то её координаты , при подстановке , обращают уравнение в числовое тождество
2= -2*4+6
2= -2 не принадлежит
(-3;0)
0= -2*(-3) +6
0=6+6
0=12 не принадлежит
(3;1)
1= -2*3+6
1=-6+6
1=0 не принадлежит
У=16х-63. К1=16
У= -2х+9. К2= -2
Коэффициенты при Х не равны, значит прямые пересекаются. Координаты точки пересечения общие и мы их можем приравнять
16х-63= -2х+9
16х+2х=9+63
18х=72
Х=4
это координата Х подставим в любое уравнение и найдём координату
У
У= -2*4+9= -8+9=1
С (4;1)
Координаты точки пересечения.