ответ:
раскроем выражение в уравнении
((xy+x)−3)2+((xy+y)−4)2=0
получаем квадратное уравнение
2x2y2+2x2y+x2+2xy2−14xy−6x+y2−8y+25=0
это уравнение вида
a*x^2 + b*x + c = 0
квадратное уравнение можно решить
с дискриминанта.
корни квадратного уравнения:
x1=d−−√−b2a
x2=−d−−√−b2a
где d = b^2 - 4*a*c - это дискриминант.
т.к.
a=2y2+2y+1
b=2y2−14y−6
c=y2−8y+25
, то
d = b^2 - 4 * a * c =
(-6 - 14*y + 2*y^2)^2 - 4 * (1 + 2*y + 2*y^2) * (25 + y^2 - 8*y) = (-6 - 14*y + 2*y^2)^2 - (4 + 8*y + 8*y^2)*(25 + y^2 - 8*y)
уравнение имеет два корня.
x1 = (-b + sqrt(d)) / (2*a)
x2 = (-b - sqrt(d)) / (2*a)
Вот накалякал. Разбирайся :)
xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9
xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z
x(y-5) = 5y
x = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73
x^2+2x+q=0
{x1+x2=-2, {x1=8
{x1×x2=q. {x2=-10
{x1+x2=-2
{x1×x2=-80
x^2+2x-80=0
x1=-2
x2=-10