М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nika7912
nika7912
20.12.2022 01:04 •  Алгебра

решить нужно сдать в 18.00 ​


решить нужно сдать в 18.00 ​

👇
Открыть все ответы
Ответ:
FireBOY57
FireBOY57
20.12.2022

Объяснение:

Первый признак равенства треугольников:

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны.

Получается, бисектриса делит квадрат на два треугольника. Треугольники, на которые бисектриса делит квадрат являются прямоугольными, так как углы у квадрата прямые. По определению у квадрата все стороны равны, то есть катеты треугольников тоже будут равны. + углы между сторонами треугольника тоже равны, они 90 градусов. Получается, по первому признаку треугольники, на которые бисектриса делит квадрат равны. А так как треугольники равны, то углы у них тоже равны. Поэтому, угол 1=2, 3=4.  


Докажите, что диагонали квадрата являются биссектрисами его углов. (По определению, у квадрата все с
4,7(55 оценок)
Ответ:
snyaSergeeva
snyaSergeeva
20.12.2022
Раскрывая скобки и приведя подобные члены, приходим к уравнению
x⁴+11*x³+46*x²+88*x+64=0. Это уравнение является приведённым, так как коэффициент перед членом с наивысшей степенью x равен 1. Поэтому корни этого уравнения могут быть среди делителей его свободного члена, т.е. 64. Целыми делителями числа 64 являются +1,-1,+2,-2,+4,-4,+8,-8,+16,-16,+32,-32, +64,-64. Но очевидно, что положительные делители не могут быть решениями уравнения, так как x⁴+11*x³+46*x²+88*x+64>0 при x>0. Подставляя в уравнение отрицательные делители, находим, что число x=-2 является одним из корней уравнения. Разделив многочлен x⁴+11*x³+46*x²+88*x+64 на двучлен x-(-2)=x+2, получаем многочлен x³+9*x²+28*x+32. Значит, 
x⁴+11*x³+46*x²+88*x+64=(x+2)*(x³+9*x²+28*x+32)=0. Уравнение x³+9*x²+28*x+32=0 тоже приведённое, поэтому корни этого уравнения могут быть среди делителей его свободного члена, т.е. 32. Но так как при x>0 x³+9*x²+28*x+32>0, то корни нужно искать лишь среди отрицательных делителей. Отрицательными делителями числа 32 являются числа 32 являются числа -1,-2,-4,-8,-16,-32. Подставляя их в уравнение, находим x=-4 - один корень данного уравнения (и соответственно второй корень исходного уравнения. Деля многочлен 
x³+9*x²+28*x+32 на двучлен x-(-4)=x+4, получаем квадратный трёхчлен x²+5*x+8. Значит, x³+9*x²+28*x+32=(x+4)*(x²+5*x+8). Дискриминант уравнения x²+5*x+8 D=5²-4*1*8=-7, поэтому действительных решений это уравнение не имеет. Значит, исходное уравнение имеет лишь два действительных корня: x1=-2 и x2=-4.
ответ: x1=-2, x2=-4.
4,5(64 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ