1.Область определения функции явяется луч [0;+∞);
2. y=0 при х=0 из этого следует что начало координат принадлежит графику функции; y>0 при x>0, а значит график располагается в первой координатной четверти (первом координатном угле)
3. Функция возрастает на луче [0;+∞); Другими словами на этом луче, большему значению аргумента, соответствует большее значение функции.
4. Функция имеет наименьшее значение, и не имеет наибольшего значения. Данное значение достигается тогда, когда х=0;
5. Функция непрерывна.
6. Функция выпукла вверх.
7. Область значений функции y=√x является луч [0;+∞)
Следует отметить, что график функции y=√x симметричен относительно оси симметрии у=х с графиком функции y=x^2, при x>0.
|5x-3|+|3x-5|=9x-10
Из определения модуля следует, что |a|>=0, |a|+|b|>=0
Отсюда:
9x-10>=0 <=> x>=10/9$ при x<10/9 корней нет
Найдем иные границы интервалов раскрытия модулей:
5x-3=0 <=> х=3/5 < 10/9
3x-5=0 <=> x=5/3>10/9/
3/5 10/9 5/3
|||>x
КОРНЕЙ НЕТ!
Отсюда: при x<10/9 - корней нет
При
10/9<= х <=5/3 имеем:
5x-3+(-3x+5)=9x-10
2x+2=9x-10
x=12/7
сравним 12/7 и 5/3:
12/7=36/21 > 5/3=35/21 => корень не входит интервал
При 10/9<= х <=5/3 корней нет
При x>=5/3
5x-3+3x-5=9x-10
8x-8=9x-10
- x = - 2
x=2
x=2 > 5/3, этот корень в исследуемый интервал входит.
ответ х=2