Пусть х (кг) - вес первоначального сплава.
х-22 (кг) - вес магния.
Процентное содержание магния в сплаве - 100*(х-22)/х.
После добавления 15 кг магния вес сплава стал - х+15 (кг).
Процентное содержание магния в нём стало 100*(х-22+15)/(х+15), что на 33% больше, чем в первоначальном сплаве.
Составим уравнение:
100*(х-22+15)/(х+15) - 100*(х-22)/х = 33
100*(х-7)*х-100*(х-22)*(х+15)=33*х*(х+15)
100х2-700х-100х2+2200х-1500х+33000=33х2+495х
33х2+495х-33000=0 I:33
х2+15x-1000=0
х=25; х=-40 - вес не может быть отрицательным
ответ: сплав первоначально весил 25 кг
0,75
Объяснение:
Для решения применим правило нахождения геометрической вероятности: Если фигура F₁ содержится в фигуре F, тогда вероятность попадания в фигуру F₁, при условии попадания в фигуру F равна отношению площадей: Р=S(F₁):S(F)
Фигура первая - большой круг с радиусом 2 см, площадь которого равна πR² = π*2²=4π (см²)
Фигура вторая - маленький круг с радиусом 1 см, площадь которого равна πr² =π*1² =π (см²)
Событие А - "точка В попадет в маленький круг радиуса 1 см, находящийся внутри большого круга радиусом 2 см".
По правилу нахождения геометрической вероятности получаем вероятность попадания точки В в маленький круг радиуса 1 см:
Р(А) = π:4π = 1/4=0,25
Вероятность того, что точка В не попадёт в маленький круг радиуса 1 см, находящийся внутри большого круга радиуса 2 см, равна вероятности противоположного события событию А, т.е.
Р = 1-Р(А) = 1-0,25 = 0,75
*** Для решения использованы формула площади круга с радиусом R:
Sкр. = πR²