Обозначим центр окружности О, точку касания К.
Радиус, проведенный в точку касания, перпендикулярен касательной. ⇒
∆ МОК - прямоугольный.
Отношение катетов 10:24=5:12 указывает на то, что длины сторон треугольника из Пифагоровых троек 5:12:13, в которых эти длины –целые числа.⇒ МО=2•13=26. И это можно проверить по т.Пифагора.
МО=√(KO²+KM²)=√676=26
В прямоугольном треугольнике каждый катет является высотой, проведенной к другому катету.
Площадь прямоугольного треугольника равна половине произведения катетов:
S=КМ•КО:2=24•10:2=120 см²
Объяснение:
x - количество деталей в 1-й коробке.
y - количество деталей во 2-й коробке.
Система неравенств:
x+y>27; x>27-y
x>2(y-12); x>2y-24
9(x-10)<y; y>9x-90; 9x<y+90; -x>-y/9 -10
x-x>2y-24 -y/9 -10
(18y-y)/9 -34<0
17y<34·9
y<2·9; y<18
При y=17: x>27-17; x>10.
Допустим x=11; y=17:
11+17>27; 28>27
11>2(17-12); 11>10
9(11-10)<17; 9<17
Неравенства выполняются, следовательно, 11 деталей - в 1-й коробке, 17 деталей - во 2-й коробке.
Чтобы сомнений не было, проверим со следующими данными:
x=12; y=16
12+16>27; 28>27
12>2(16-12); 12>8
9(12-10)<16; 18>16 - неравенство не выполняется.
ответ: 11 и 17.