Графическое решение - это построение двух графиков: параболы у = х² и прямой линии у = -х + 6. Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически. х² = 6 - х х² + х - 6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25; Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении. Для построения прямой достаточно двух точек: х = 0, у = 6, х = 3, у = -3+6 = 3
1) |x-3|=|2x+5| возведем обе части в квадрат и тем самым избавимся от модуля (x-3)²=(2x+5)² x²-6x+9=4x²+20x+25 4x²+20x+25-x²+6x-9=0 3x²+26x+16=0 D=26²-4*3*16=676-192=484 √D=22 x₁=(-26-22)/6=-8 x₂=(-26+22)/6=-2/3
2)|x-3|>x+2 а) Рассмотрим случай, когда x-3<0 или x<3 В этом случае |x-3|=-(x-3)=3-x 3-x>x+2 3-2>x+x 1>2x 2x<1 x<1/2 сопоставляя x<3 и x<1/2 получаем x<1/2 б) Теперь рассмотрим случай, когда x-3≥0 или x≥3 В этом случае |x-3|=x-3 x-3>x+2 3>2 такого быть не может
Объяснение:
1) Линейная функция
Решение на фотографии