ответ: 64 и 96 км/час.
Объяснение: формула известна: путь = скорость * время;
до встречи автомобили двигались с разной (видимо) скоростью - обозначим (х) км/час для автомобиля из А->В и (у) км/час для автомобиля из В->А, значит разное расстояние - (х*t) км и (у*t) км, одинаковым было время (в пути до встречи), обозначим (t) часов.
x*t + y*t = 80 (км)
оставшуюся часть пути (это у*t) автомобиль из А->В со скоростью (х) за 45 минут = 3/4 часа: y*t = (3/4)*x
t = 3x / (4y)
оставшуюся часть пути (это x*t) автомобиль из со скоростью (y) за 20 минут = 1/3 часа: x*t = (1/3)*y
t = y / (3x)
получим: 3x / (4y) = y / (3x)
9x^2 = 4y^2 ---> 3x = 2y
y = 1.5x (т.е. скорость одного авто в 1.5 раза больше скорости другого)
(y/3) + (3x/4) = 80
4*1.5х + 9x = 80*12
15x = 5*16*4*3
x = 16*4 = 64 (км/час)
у = 1.5*64 = 3*32 = 96 (км/час)
Проверка:
из А->В автомобиль со скоростью 64 км/час за 80/64 часа = 5/4 часа = 1 час 15 минут
из В->А автомобиль со скоростью 96 км/час за 80/96 часа = 5/6 часа = 50 минут
тогда
из А->В автомобиль до встречи за 1 час 15 минут - 45 минут = 30 минут
из В->А автомобиль до встречи за 50 минут - 20 минут = 30 минут
Упрощение
(4x 2 + -9) + -2 (2x + -3) + x (2x + -3) = 0
Измените порядок условий:
(-9 + 4x 2 ) + -2 (2x + -3) + x (2x + -3) = 0
Избавиться от скобок, заключающих (-9 + 4x 2 )
-9 + 4x 2 + -2 (2x + -3) + x (2x + -3) = 0
Измените порядок условий:
-9 + 4x 2 + -2 (-3 + 2x) + x (2x + -3) = 0
-9 + 4x 2 + (-3 * -2 + 2x * -2) + x (2x + -3) = 0
-9 + 4x 2 + (6 + -4x) + x (2x + -3) = 0
Измените порядок условий:
-9 + 4x 2 + 6 + -4x + x (-3 + 2x) = 0
-9 + 4x 2 + 6 + -4x + (-3 * x + 2x * x) = 0
-9 + 4x 2 + 6 + -4x + (-3x + 2x 2 ) = 0
Измените порядок условий:
-9 + 6 + -4x + -3x + 4x 2 + 2x 2 = 0
Объедините похожие термины: -9 + 6 = -3
-3 + -4x + -3x + 4x 2 + 2x 2 = 0
Объедините похожие термины: -4x + -3x = -7x
-3 + -7x + 4x 2 + 2x 2 = 0
Зерноуборочный подобные термины: 4x 2 + 2x 2 = 6x 2
-3 + -7x + 6x 2 = 0
Решение
-3 + -7x + 6x 2 = 0
Решение для переменной 'x'.
Разложите на множители трехчлен.
(-1 + -3x) (3 + -2x) = 0
Подзадача 1
Установите коэффициент '(-1 + -3x)' равным нулю и попытайтесь решить:
Упрощение
-1 + -3x = 0
Решение
-1 + -3x = 0
Переместите все термины, содержащие x, влево, все остальные термины - вправо.
Добавьте «1» к каждой стороне уравнения.
-1 + 1 + -3x = 0 + 1
Объедините похожие термины: -1 + 1 = 0
0 + -3x = 0 + 1
-3x = 0 + 1
Объедините похожие термины: 0 + 1 = 1
-3x = 1
Разделите каждую сторону на «-3».
х = -0,3333333333
Упрощение
х = -0,3333333333
Подзадача 2
Установите множитель '(3 + -2x)' равным нулю и попытайтесь решить:
Упрощение
3 + -2x = 0
Решение
3 + -2x = 0
Переместите все термины, содержащие x, влево, все остальные термины - вправо.
Добавьте «-3» к каждой стороне уравнения.
3 + -3 + -2x = 0 + -3
Объедините похожие термины: 3 + -3 = 0
0 + -2x = 0 + -3
-2x = 0 + -3
Объедините похожие термины: 0 + -3 = -3
-2x = -3
Разделите каждую сторону на «-2».
х = 1,5
Упрощение
х = 1,5
Решение
х = {-0,3333333333, 1,5}