ответ: функция имеет максимум zmax=12 в точке M(4;4).
Объяснение:
1) Находим первые частные производные:
z'x=y/(2*√x)-1, z'y=√x-2*y+6
Приравнивая их к 0, получаем систему уравнений:
y/(2*√x)-1=0
√x-2*y+6=0
Решая её, находим x=4 и y=4 - координаты единственной критической (стационарной) точки M.
2) Находим вторые частные производные:
z"xx=-y/(4*√x³), z"xy=1/(2*√x), z"yy=-2
и вычисляем их значения в точке M:
A=z"xx(M)=-1/8, B=z"xy(M)=1/4, C=z"yy(M)=-2
3) Составляем выражение A*C-B² и находим его значение. Оно равно 3/16>0, поэтому функция z действительно имеет экстремум в точке М. И так как при этом A<0, то это - максимум. Его значение zmax=4*√4-4²-4+6*4=12.
Найдите множество значение функции f(x) = x^2+2x+19
ответ: D) (18, +∞)
Объяснение:
По формуле: -b:a= -3:1*3 = -2:3= -1 находим координаты Х вершины параболы х=-1
Подставляем в уравнении и находим координату У
(-1)² + 2*(-1) +19 = 1- 2 +19= -1+19 = 18
Вершина параболы находится в точки (-1;18)
Значит множество значений функции (18; +∞)
Найдите радиус окружности, длина которого 12 π см
Е) 6 см.
Объяснение:
Возьмем формулу длины окружности
l=2πr из этой формулы выведем радиус окружности
r=l/2π теперь подставим имеющиеся данные r=l/2π=12π/2π=6 cм