(1; 4); (4; 1)
{ x√x + y√y = 9
{ x√y + y√x = 6
Переходим к новым переменным
a = √x; x = a^2; x√x = a^3
b = √y; y = b^2; y√y = b^3
{ a^3 + b^3 = 9
{ a^2*b + ab^2 = 6
Умножим второе уравнение на 3
{ a^3 + b^3 = 9
{ 3a^2*b + 3ab^2 = 18
Складываем уравнения
a^3 + b^3 + 3a^2*b + 3ab^2 = 9 + 18
Слева записан куб суммы
(a + b)^3 = 27
a + b = 3
b = 3 - a
Подставляем
a^2*(3 - a) + a(3 - a)^2 = 6
a(3 - a)(a + 3 - a) = 6
3a(3 - a) = 6
a(3 - a) = 2
-a^2 + 3a = 2
a^2 - 3a + 2 = 0
(a - 1)(a - 2) = 0
1) a = 1; b = 2
x = a^2 = 1; y = b^2 = 4
(1; 4) - это решение.
2) a = 2; b = 1
x = a^2 = 4; y = b^2 = 1
(4; 1) - это решение.
Пусть Х деталей токарь должен был обрабатывать за 1 час. Тогда время его работы составило бы (240:Х) часов. Но токарь стал обрабатывать в час на 2 детали больше, то есть (Х+2), и время его работы составило 240:(Х+2) часов. Зная, что токарь выполнил задание на 4 часа раньше срока, составим уравнение:
240:Х-240:(Х+2)=4
240*(Х+2)-240*Х=4*Х*(Х+2)
4*Х^2+8*Х-240*Х-480+240*Х=0
4*Х^2+8*Х-480=0
Х^2+2*Х-120=0
Дискриминант=484
Корень из дискриминанта=22
Х1=-11
Х2=10.
так как количество деталей величина положительная, то -11 - посторонний корень. Значит, токарь должен был обрабатывать за 1 час 10 деталей.