Положим в банк 8 рублей
Через год сумма на счету увеличится ровно в p раз и станет равной (8p) рублей.
Поделим её на 4 части, заберем (2p) рублей, оставим в банке (6p) рублей.
Известно, что к концу следующего года в банке оказалось 8·1,44 = 11,52 рубля.
k=11,52/6p=1,92/p
Нашли второй повышающий коэффициент k банка.
p*k=p*1,92/p=1,92
Из условия следует, что второй коэффициент на 0,4 больше первого.
p*(p+0,4)=1,92
P2+0,4p-1,92=0
D=0,16+7,68=7,84
P1=(-0,4-2,8)/2=-1,6 не удов усл
P2=(-0,4+2,8)/2=1,2
k=1,2+0,4=1,6
В 1,2 раза увеличилась сумма вклада первый раз, в 1,6 раз - во второй раз.
Было 100%, стало 160%. Новый процент годовых равен 160%-100% = 60%.
ответ: 60%
6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение: