Приклад:
Розв'язати систему рівнянь: {x−2y=3,5x+y=4.
1) З першого рівняння системи виражаємо змінну x через змінну y.
Отримуємо: x−2y=3,x=3+2y;
2) Підставимо отриманий вираз замість змінної x у друге рівняння системи:
5⋅x+y=4,5⋅(3+2y)+y=4;
3) Розв'яжемо утворене рівняння з однією змінною, знайдемо y:
5⋅(3+2y)+y=4,15+10y+y=4,10y+y=4−15,11y=−11,|:11y=−1¯¯¯¯¯¯¯¯¯¯¯.
4) Знайдемо відповідне значення змінної x, підставивши значення змінної y, у вираз знайдений на першому кроці:
x=3+2⋅y,x=3+2⋅(−1),x=3−2,x=1¯¯¯¯¯¯¯¯.
5) Відповідь: (1;−1) .
Объяснение:
это решить линейные уравнения без черчежей
ответ: 8.
Первый решение в лоб):
1·2·3·...·37 = 2³⁴·3¹⁷·5⁸·7⁵·11³·13²·17²·19·23·29·31·37 = 2²⁶·3¹⁷·7⁵·11³·13²·17²·19·23·29·31·37·10⁸
На 8 нулей оканчивается т.к. 10⁸. И другие множители не дадут нулей в конце.
Покажу, как разложить на простые множители такое произведение, на примере множителя 2.
От 1 до 37:
36:2=18 чисел кратных 2.
36:4=9 чисел кратных 4.
32:8=4 числа кратных 8.
32:16=2 числа кратных 16.
32:32=1 число кратное 32.
С каждой следующей кратность мы подсчитываем по одной 2 в множителя чисел. Поэтому всего 2 встречается 18+9+4+2+1=34 раза.
Второй проще предыдущего):
Количество нулей числа зависит от того, сколько раз встречается 5 и 2 при разложении этого числа на простые множители т.к. 10=2·5.
Как и в первом подсчитаем, что всего 34 двойки и 8 пятёрок. Значит, можно "составить" не более 8 десяток. И будет 8 нулей в конце.
-6x + 14y = -2;
6x + 9y = 48.
Сложим два уравнения системы и получим:
2x + 3y = 16;
14y + 9y = 48 - 2;
23y = 46;
y = 46 : 23;
y = 2.
Система уравнений:
x = (16 - 3y)/2 = (16 - 3 * 2)/2 = (16 - 6)/2 = 10/2 = 5;
y = 2.
ответ: (5; 2).