В)17
Объяснение:
x^2 ≤ 7x + 60 Запишем равенство и найдём корни квадратного уравнения. x^2 - 7x - 60 = 0 D = 7 * 7 + 4 * 60 = 289 = 17^2 x1.2 = (7 ± 17)/2 x1 = 24/2 = 12 x2 = - 10/2 = - 5 Разложим левую часть неравенства на множители. (x − 12)(x + 5) ≤ 0 Произведение двух сомножителей отрицательно в том случае, когда один из них отрицательный, а второй положительный. Поэтому можем записать две системы неравенств. x - 12 ≤ 0 x + 5 ≥ 0 и x - 12 > 0 x + 5 ≤ 0 x ≤ 12 x ≥ - 5 [- 5; 12] - интервал значений переменной, удовлетворяющих неравенству. x ≥ 12 x ≤ - 5 Найдём длину полученного интервала 12 + 5 = 17 единиц. ответ: длина интервала, на котором выполняется неравенство, 17 единиц.
Тригонометрия Примеры
Популярные задачи Тригонометрия Решить систему неравенств sin(x)>0
sin(x)>0
Решим
sin(x)>0
относительно
x
Нажмите, чтобы отобразить меньше шагов.
Найдем обратный синус от обеих частей уравнения, чтобы извлечь x
из-под синуса.x>arcsin(0)
Точное значение
arcsin(0)
равно 0.
x>0
Функция синуса принимает положительные значения в первом и втором квадрантах. Для определения второго решения вычитаем решение из
π
, чтобы найти решение во втором квадранте.
x=π−0
Вычтем 0 из π.
x=π
Найдем период 2π
Период функции
sin(x)
равен 2π
то есть значения будут повторяться через каждые 2π
радиан в обоих направлениях.
x = 2πn; π+2πn
для всех целых n
Объединяем ответы.
x=πn
для всех целых n
Объяснение:
х - ширина щита, 9/х - длина щита.
P(x)=2(x+9/x) - периметр.
P'{x)=2(1-9/x^2),
P'(x)=0, 2(1-9/x^2)=0, 1-9/x^2=0, 9/x^2=1, x^2=9, x_1=-3, x_2=3,
x<-3, P'(x)>0, P(x) - возрастает,
-3<x<3, P'(x)<0, P(x) - убывает,
x>3, P'(x)>0, P(x) -возрастает,
min P(x)=P(3)=2(3+9/3)=12
x=3,
9/x=3.
наименьший периметр у квадрата со стороной 3 м