х км/ч - скорость катера по течению реки
у км/ч - скорость катера против течения реки
{3х + 4у = 174
{4х + 5у = 224
- - - - - - - - - -
Вычтем из первого уравнения системы второе
х + у = 50
х = 50 - у
Подставим значение х в любое уравнение системы
3 · (50 - у) + 4у = 174 или 4 · (50 - у) + 5у = 224
150 - 3у + 4у = 174 200 - 4у + 5у = 224
у = 174 - 150 у = 224 - 200
у = 24 у = 24
- - - - - - - - - -
х = 50 - 24
х = 26
ответ: 26 км/ч - скорость катера по течению реки; 24 км/ч - скорость катера против течения реки.
1)
2 sin²x - sin x = 0
sin x (2sin x - 1) = 0
a) sin x = 0
x₁ = π/2 + πn (n ∈ Z) x₁ = π/2; 3π/2; 5π/2; ...
b) 2sin x - 1 = 0 sin x = 0.5
x₂ = π/6 + 2 πk (k ∈ Z) x₂ = π/6; 13π/6; 25π/6; ...
x₃ = 5π/6 + 2 πm (m ∈ Z) x₃ = 5π/6; 17π/6; ...
В промежутке {0; 5π/6] уравнение имеет три корня: π/6; π/2: 5π/6
Можно написать что промежуток этот {0; π]
2)
2 cos²x - √3 cos x = 0
cos x · (2cos x - √3) = 0
a) cos x = 0
x₁ = πn (n ∈ Z) x₁ = 0; π; 2π; ...
2cos x - √3 = 0
cos x = 0.5 √3
x₂ = π/6 + 2πk (k ∈ Z) x₂ = π/6; 13π/6; 25π/6; ...
x₃ = - π/6 + 2πm (m ∈ Z) x₃ = -π/6; 11π/6; 23π/6; ...
В промежутке {0; π] уравнение имеет три корня: 0; π/6; π