М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
coffeepro80
coffeepro80
18.04.2023 00:46 •  Алгебра

Найдите координаты точки пересечения функции у =-1/4x-8с особью

👇
Открыть все ответы
Ответ:
TAMADA123123
TAMADA123123
18.04.2023
1) Найдите точку минимума функции у = х³ - 2х² + х - 2

Находим производную функции, как производную суммы:  ( u + v )' = u' + v' . И приравниваем его к нулю, так как в экстремумах производная равна нулю.

у' = ( х³ - 2х² + х - 2 )' = ( х³ )' - ( 2х² )' + ( х )' - ( 2 )' = 3х² - 4х + 1у' = 0   ⇒   3х² - 4х + 1 = 0D = (-4)² - 4•3•1 = 16 - 12 = 4 = 2²x₁ = ( 4 - 2 )/6 = 2/6 = 1/3x₂ = ( 4 + 2 )/6 = 6/6 = 1y'  [ 1/3 ][ 1 ]> xy   __↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума  ⇒  х = 1ОТВЕТ: 12)  Найдите точку максимума функции  у = 9 - 4х + 4х² - х³у' = - 4 + 8х - 3х²  ;   у' = 0- 4 + 8x - 3х² = 03x² - 8x + 4 = 0D = (-8)² - 4•3•4 = 64 - 48 = 16 = 4²x₁ = ( 8 - 4 )/6 = 4/6 = 2/3x₂ = ( 8 + 4 )/6 = 12/6 = 2y'  [ 2/3 ][ 2 ]> xy   __↓__[ x (min) ]__↑__[ x (max) ]__↓__> xЗначит, точка максимума ⇒  х = 2ОТВЕТ: 23)  Найдите точку минимума функции  у = х³ - 3,5х² + 2х - 3у' = 3х² - 7х + 2  ;   у' = 0   ⇒3х²- 7х + 2 = 0D = (-7)² - 4•3•2 = 49 - 24 = 25 = 5²x₁ = ( 7 - 5 )/6 = 2/6 = 1/3x₂ = ( 7 + 5 )/6 = 12/6 = 2y'  [ 1/3 ][ 2 ]> xy   __↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума  ⇒  х = 2ОТВЕТ: 24)  Найдите точку максимума функции  у = х³ + х² - 8х - 7у' = 3х² + 2х - 8  ;   у' = 0   ⇒3х² + 2х - 8 = 0D = 2² - 4•3•(-8) = 4 + 96 = 100 = 10²x₁ = ( - 2 - 10 )/6 = - 12/6 = - 2x₂ = ( - 2 + 10 )/6 = 8/6 = 4/3y'  [ - 2 ][ 4/3 ]> xy  ___↑___[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка максимума  ⇒  х = - 2ОТВЕТ: - 25)  Найдите точку минимума функции  у = х³ - 4х² - 3х - 12у' = 3х² - 8х - 3  ;   у' = 0  ⇒3х² - 8х - 3 = 0D = (-8)²- 4•3•(-3) = 64 + 36 = 100 = 10²x₁ = ( 8 - 10 )/6 = - 2/6 = - 1/3x₂ = ( 8 + 10 )/6 = 18/6 = 3y'  [ - 1/3 ][ 3 ]> xy  ___↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума  ⇒  х = 3ОТВЕТ: 36)  Найдите точку максимума функции  у = х³ + 8х² + 16х + 3у' = 3х² + 16х + 16  ;   у' = 0   ⇒3х² + 16х + 16 = 0D = 16² - 4•3•16 = 16•( 16 - 12 ) = 16•4 = 4²•2² = 8²x₁ = ( - 16 - 8 )/6 = - 24/6 = - 4x₂ = ( - 16 + 8 )/6 = - 8/6 = - 4/3y'  [ - 4 ][ - 4/3 ]> xy   __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка максимума  ⇒  х = - 4ОТВЕТ: - 47)  Найдите точку минимума функции  у = х³ + х² - 16х + 5у' = 3х² + 2х - 16  ;   у' = 0   ⇒3х² + 2х - 16 = 0D = 2² - 4•3•(-16) = 4•( 1 + 48 ) = 4•49 = 2²•7² = 14²x₁ = ( - 2 - 14 )/6 = - 16/6 = - 8/3x₂ = ( - 2 + 14 )/6 = 12/6 = 2y'  [ - 8/3 ][ 2 ]> xy  __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка минимума  ⇒  х = 2ОТВЕТ: 28)  Найдите точку максимума функции  у = х³ + 4х² + 4х + 4у' = 3х² + 8х + 4  ;   у' = 0   ⇒3х² + 8х + 4 = 0D = 8² - 4•3•4 = 64 - 48 = 16 = 4²x₁ = ( - 8 - 4 )/6 = - 12/6 = - 2x₂ = ( - 8 + 4 )/6 = - 4/6 = - 2/3y'  [ - 2 ][ - 2/3 ]> xy  __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка максимума  ⇒  х = - 2ОТВЕТ: - 29)  Найдите точку минимума функции  у = х³ - 4х² - 8х + 8у' = 3х² - 8х - 8   ;   у' = 0   ⇒3х² - 8х - 8 = 0D = (-8)² - 4•3•(-8) = 64 + 96 = 160 = (4√10)²x₁ = ( 8 - 4√10 )/6 = (4 - 2√10)/3x₂ = ( 8 + 4√10 )/6 = (4 + 2√10)/3y'  [ (4-2√10)/3 ][ (4+2√10)/3 ]> xy  ___↑__[ x (max) ]↓[ x (min) ]↑___> xЗначит, точка минимума  ⇒  х = (4+2√10)/3ОТВЕТ: (4+2√10)/310)  Найдите точку максимума функции  у = х³ + 5х² + 3х + 2 у' = 3х² + 10х + 3  ;   у' = 0  ⇒3х² + 10х + 3 = 0D = 10² - 4•3•3 = 100 - 36 = 64 = 8²x₁ = ( - 10 - 8 )/6 = - 18/6 = - 3x₂ = ( - 10 + 8 )/6 = - 2/6 = - 1/3y'  [ - 3 ][ - 1/3 ]> xy  __↑__[ x (max) ]__↓__[ x (min) ]__↓__> xЗначит, точка максимума  ⇒  х = - 3ОТВЕТ: - 3
4,8(68 оценок)
Ответ:
anastasia1medvedeva
anastasia1medvedeva
18.04.2023
Итак. мы имеем произведение двух множителей. оно может быть больше либо равным нулю,если
1) оба множителя больше нуля.
2) оба множителя меньше нуля. но! log5 не может быть меньше нуля. в какую степень нужно возвести 5чтобы получить отрицательное число? да ни в какую. не получится просто.
3) один из множителей равен 0. т.е. либо х-1=0. либо логарифм равен нулю. если логарифм равен нулю,то 5^0=1. т.е. 4-х=1

все эти условия можно записать в виде системы. т.е. х-1 либо больше нуля,либо равен нулю. и одз логарифма 4-х>0 сюда же входит случай,когда логарифм равен нулю.
решение записано на листочке. т к. у нас спрашивают количество целых решений. просто посчитаем их на получившемся промежутке. сюда вхрдТ точки 1,2,3. точка 4 в промежуток не включена.
ответ :3 решения
Найдите количество всех целых решений неравенства (х-1)*log5(4-x)≥0
4,8(9 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ