Дано уравнение:
а) Решите уравнение.
б) Укажите корни уравнения, принадлежащие отрезку
Решение:
а) Для преобразования используем формулу приведения для косинуса и формулу синуса двойного угла:
Тогда cos x = 0 или sin x = 0,5
Решим cos x = 0. Формулы для нахождения корней уравнения вида cos x = a:
Обе формулы можем объединить в одну:
Получим:
Можно записать в виде:
Решим sin x = 0,5. Запишем формулы для нахождения корней уравнения вида sin x = a.
Решением являются два корня (k — целое число):
Получим:
б) Найдём корни уравнения, принадлежащие отрезку.
Суть применяемого заключается в следующем:
1. Берём поочерёдно каждый корень уравнеия.
2. Составляем двойное неравенство.
3. Решаем это неравенство.
4. Находим коэффициент k.
5. Подставляем найденный коэффициент(ты) обратно в выбранный корень и вычисляем.
Так для каждого найденного нами корня. Итак, первый корень:
Решаем неравенство:
Так число k целое, то k1 = 2 k2 = 3
Находим корни, принадлежащие интервалу:
Следующий корень:
Решаем неравенство:
Для полученного неравенства целого числа k не существует.
Следующий корень:
Решаем неравенство:
Так как число k целое, то k = 1.
Находим корень принадлежащий интервалу:
Получили три корня (выделены жёлтым):
*Обратите внимание, что использовали знак нестрого неравенства, так как границы интервала включены (входят) в интервал.
В решении.
Объяснение:
График функции - парабола со смещённым центром.
Таблица:
х -2 -1 0 1 2 3 4 5 6
у 15 8 3 0 -1 0 3 8 15
График прилагается.
1. Область определения функции. Ничем не ограничена.
D(y) = х∈(-∞; +∞).
2. Область значения функции E(y). Ограничена ординатой вершины параболы у = -1.
E(y) = у∈[-1; +∞).
3. Нули функции ( аргумент точек пересечения параболы с осью Ох).
х = 1; х = 3. Координаты точек (1; 0); (3; 0).
4. Знакопостоянство ( какая часть параболы находится выше оси Ох у>0, какая часть параболы находится ниже оси Ох у<0)
а) у>0 при х∈(-∞; 1)∪(3; +∞);
б) у<0 при х∈(1; 3).
5. Наибольшее (наименьшее) значение функции ( значение ординаты вершины параболы)
.
а) у наиб. не существует.
б) у наим. = -1.
6. Промежутки возрастания (убывания ) функции.
а) функция возрастает на промежутке х∈[2; +∞);
б) функция убывает на промежутке х∈(-∞; 2].
3a^5^3
Объяснение:
a^(3)*24a^(2)*(1)/(8)b^(3) = 3a^5^3