Дано квадратное уравнение x^2 -6x + c = 0. а) При каких значениях параметра с данное уравнение имеет два одинаковых действительных корня? b. Найдите корни уравнения.
Докажем, сначала, что куб числа - монотонная функция. Монотонная функция -функций, у которой одному значению переменной соответствует только одно значение функции. Пойдем методом от противного пусть в точках х и х+с функция принимает одно и то же значение, тогда: x^3=(x+c)^3 x^3=x^3+3x^2c+3xc^2+c^3 3c *x^2+ 3c^2 *x +c^3=0|:c не равное 0 3x^2+3cx+c^2=0 D=9c^2-4*3c^2=-3c^2<0 Значит не существует такого с, что функция в при нескольких икс принимает одно и то же значение, а значит она монотонна. Если функция монотонна, то достаточно доказать, что если функция f(х+1) больше функции f(x) -то функция явл возрастающей. Пусть: (x+1)^3>x^3 x^3+3x^2+3x+1>x^3 3x^2+3x+1>0 D=9-12=-3<0 Значит уравнение корней не имеет, у параболы ветви вверх, значит она всюду больше 0 Отсюда следует, что: (x+1)^3>x^3 f(x+1)>f(x) Значит функция является монотонно возрастающей.
S = Vt, где S — расстояние, V — скорость, а t — время.
Итак, рассуждаем. Грузовой автомобиль проехал неизвестное расстояние за 8 часов, двигаясь со скоростью 60км/ч. Значит, чтобы найти расстояние, которое он проехал, необходимо время (8 часов) умножить на скорость (60км/ч). 8ч. × 60км/ч. = 480 километров — расстояние, которое проехал грузовой автомобиль.
Разбираемся с легковой машиной. S = Vt —> t = , где t — время, S — путь, а V — скорость. Расстояние мы вычислили, а скорость легковой машины дана в условии. t = = 4 часа — время, потраченное легковой машиной на путь.
Мы видим, что скорость легковой машины ровно в 2 раза больше скорости грузового автомобиля —> следовательно, легковая машина и проехала это расстояние в 2 раза быстрее, чем грузовой автомобиль. Исходя из выводов, найти время, потраченное легковой машиной на путь, очень просто: необходимо 8 часов разделить на 2, что равно 4 часа.
решение на фотографии