1) Запишем это уравнение в виде (2x+5)(2y+3)=1 (проверяется раскрытием скобок и делением на 2). Т.к. у 1 есть только два делителя 1 и -1, то возможны только 2 варианта: 2x+5=1, 2у+3=1, откуда х=-2, у=-1 или 2x+5=-1, 2у+3=-1, откуда х=-3, у=-2. ответ: 2 решения.
2) Введем обозначения как на рисунке. Пусть ∠O₁BM=x. BO₁ и BO₂ - биссектрисы углов, сумма которых равна 90°, поэтому ∠O₂BN=45°-x. По свойству касательных BE=BM=ctg(x) и BF=BN=r·ctg(45°-x), откуда BF/BE=r·ctg(45°-x)/ctg(x)=r·tg(x)/tg(45°-x). С другой стороны, BF/BE=AD/AB=tg(2x). Таким образом, r·tg(x)/tg(45°-x)=tg(2x). После несложных преобразований получаем: r=2/(1+tg(x))². Т.к. х изменяется от 0 до 45°, то r может принимать значения от 1/2 до 2.
1) Запишем это уравнение в виде (2x+5)(2y+3)=1 (проверяется раскрытием скобок и делением на 2). Т.к. у 1 есть только два делителя 1 и -1, то возможны только 2 варианта: 2x+5=1, 2у+3=1, откуда х=-2, у=-1 или 2x+5=-1, 2у+3=-1, откуда х=-3, у=-2. ответ: 2 решения.
2) Введем обозначения как на рисунке. Пусть ∠O₁BM=x. BO₁ и BO₂ - биссектрисы углов, сумма которых равна 90°, поэтому ∠O₂BN=45°-x. По свойству касательных BE=BM=ctg(x) и BF=BN=r·ctg(45°-x), откуда BF/BE=r·ctg(45°-x)/ctg(x)=r·tg(x)/tg(45°-x). С другой стороны, BF/BE=AD/AB=tg(2x). Таким образом, r·tg(x)/tg(45°-x)=tg(2x). После несложных преобразований получаем: r=2/(1+tg(x))². Т.к. х изменяется от 0 до 45°, то r может принимать значения от 1/2 до 2.
1) 7 - 3x - 3 = 2x
4 = 5x
x = 4\5
2) 12x + 3 = 8x - 3x - 4
12x - 8x + 3x = - 4 - 3
7x = - 7
x = - 1
3) 10 - x( 5 - 6 - x) = x^2 + 3x - 4x
10 - 5x + 6x +x^2 = x^2 - x
10 + x +x^2 = x^2 - x
10 = - x - x^2 + x^2 - x
10 = - 2x
x = - 5
4)
5x - 2x + 6 = 6x
3x - 6x = - 6
- 3x = - 6
x = 2
5) 6x - 2x - 5 = 6x - 12
4x - 6x = - 12 + 5
- 2x = - 7
x = 7/2 = 3.5
6) x(x^2 - x) + 6 = (x^2 + 3x)(x - 4)
x^3 - x^2 + 6 = x^3 - 4x^2 + 3x^2 - 12x
x^3 - x^2 - x^3 + x^2 + 12x = - 6
12x = - 6
x = - 0,5
7) 6 - 4x - 4 = 3x
- 4x - 3x = - 6 + 4
- 7x = - 2
x = 2\7
8) 3x - 6 = 7 + 2x - 5
3x - 2x = 6 + 7 - 5
x = 8