Выделим полный квадрат:
Раскладываем левую часть по формуле разности квадратов:
5 можно разложить в произведение двух сомножителей следующими
Это позволяет заменить рассмотрение уравнение на совокупность из четырёх систем:
1) x - y - 1 = 5, x + y + 1 = 1
Складываем и вычитаем уравнения:
2x = 5 + 1, 2y + 2 = 1 - 5
x = 3, y = -3
2) x - y - 1 = 1, x + y + 1 = 5
2x = 1 + 5, 2y + 2 = 5 - 1
x = 3, y = 1
3) x - y - 1 = -1, x + y + 1 = -5
2x = -1 - 5, 2y + 2 = -5 + 1
x = -3, y = -3
4) x - y - 1 = -5, x + y + 1 = -1
2x = -5 - 1, 2y + 2 = -1 + 5
x = -3, y = 1
Этот же ответ можно было получить из первого решения и того, что если (x, y) – решение, то и (-x, y) и (x, -2 - x) – решение.
ответ. (3, -3), (3, 1), (-3, -3), (-3, 1)
1.
– 6x – 23 = – 9x – 5
– 6x + 9x = – 5 + 23
3x = 18
x = 6
2.
8x – 6 = 5x + 3
8x – 5x = 3 + 6
3x = 9
x = 3
3.
6x + 7 = 20x – 5 – 16
6x – 20x = – 16 – 5 – 7
-14x = -28
x = 2
4.
15x – 12x – 20 = 14x + 35
15x – 12x – 14x = 35 + 20
-11x = 55
x = -5
5.
15x – 40 – 6 + 15x = 4x – 20
15x + 15x – 4x = – 20 + 6 + 40
26x = 26
x = 1
6.
2(x-23)+3(15-x)=-x+1
2x – 46 + 45 – 3x = – x + 1
2x – 3x + x = 1 – 45 + 46
0x = 2
Какой бы x мы ни взяли, это уравнение не превратится в верное равенство. Значит, это уравнение решений не имеет!