Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше
1) а) (m+n)(m²-mn+n²)
б) (5+n)(25-5n+n²)
в) (1/5m-3)(1/25m²+3/5m+m²)
г) (3n-4m)(9n²+12mn+16m²)
2)57³-27³=(3*19)³-(3*9)³=3³(19³-9³)=3³(19-9)(19²+19*9+9²)=3³*10(19²+19*9+9²)=3²*30*(19²+19*9+9²)
3)a) k² +2kn + n²=(k+n)(k+n)
б) n² - 8n + 16=(n-4)(n-4)
в) 16k² + 40kn + 25n²=(4k+5n)(4k+5n)
г) k²n² - 2kn + 1=(kn-1)(kn-1)