Так как последняя цифра четна и число кратно 5 , то она равна нулю , а само число кратно 70 , запишем его в виде : A = 49000 +100x +10y , где x и y - число сотен и десятков числа А , х≠0 , так как двух нулей быть не должно , 49000 кратно 70 ⇒ 100х+10y также кратно 70 ( оно равно А -49000) и должно быть наименьшим , рассмотрим трехзначные числа, кратные 70 -140 , 210 , 280 , 350 и т .д., наименьшее число из этой последовательности с различными четными цифрами равно 280 ⇒ А =49280
ответ :49280
Цель задачи найти наименьшее число, которое делится на 35.
Разложим число 35 = 5 * 7,
значит число 49*** должно одновременно делится и на 5 и на 7.
Рассуждаем.
1) Признак делимости числа 49*** на 5 это такое число, у которого последняя цифра делится на 5. Из чётных чисел наименьшее это - 0.
Предварительно число имеет вид 49**0.
2) Рассмотрим теперь признак делимости на 7.
По определению число делится на 7 если результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.
Т.к. последняя цифра 0, то достаточно рассмотреть только число 49**.
Запишем иначе: 49ХУ, тогда из определения
(49Х - 2*У) = - этот полученный результат доложен делится на 7.
Из выражения видно, что наименьшее чётная цифра, которая будет обеспечивать признак делимости на 7 это - 0 , т.е. число 4900
тогда
490 - 2 * 0 = 490 - это число делится на 7.
Получаем наименьшее число 49000 - которое делится на 35, но по условию задачи цифры должны быть различные.
Тогда ближайшие числа которые должны делится на 7 это:
4922; 4924; 4926 и 4928
Проверим делимость на 7
492 - 2*2 = 488 ⇒ 48 - 2 * 8 = 32 не делится на 7
492 - 2*4 = 484 ⇒ 48 - 2 * 4 = 40 не делится на 7
492 - 2*6 = 480 ⇒ 48 - 2 * 0 = 48 не делится на 7
492 - 2*8 = 476 ⇒ 47 - 2 * 6 = 35 делится на 7
Окончательно запишем 49280 наименьшее число с различными цифрами, которое делится на 35
ответ: 49280 - наименьшее число которое делится на 35.
Объяснение:
2. 2y/(y-5)=5/(y-5), [умножим левую и правую часть на (y-5) при у≠5]
получим: 2y=5;
y=2,5.
***
2y=5;
y=2.5.
***
4. 16/(x²+1) =x²/(x²+1); [: x²+1] при x²+1 ≠0
16=x²;
x=√16=±4;
***
2. (4y+3)/(y-7)=y²/(7-y);
(4y+3)/(y-7)= - y²/(y-7); {: y-7 при условии y-7≠0};
4y+3=-y²;
y²+4y+3=0;
y1=-1; y2=-3.
***
4. 1(3x-1)=x/(27-x);
27-x=x(3x-1);
27-x=3x²-x;
3x²=27;
x²=9;
x1,2=±3